Measure Theory

Measure Space: (2, F) : F is a o—field on Q s.t. (1) Q € F, (2) VAe F = A° € F,
(3) A, As, - G]‘-ﬁufilAl € F.

Measure: a measure p on F is a non-negative extended real-valued function on F s.t.
any disjointed sets A1, Ag, -+, p(UA;) = > n(A;). () can be co. If p(2) =1,
it’s probability measure and (2, F, ) is probability space.

Lebesgue Measure: Consider @ =R, A = {(a,b) : —oo < a < b < +o0} i.e. collection
of open intervals. B = o(A) is called Borel sets. On B(R), Lebesgue measure is the
length of the interval, which can be oco.

Counting Measure: Let 2 be a countable set, F = 2%, and for A € F, u(A) = |A|.

Measure Function: s.t. g(z) = lim Sy, (z), where (1)S,(z) takes finite number of
values {a;};~, (2){z : Sp(z) =a;} € F, (3)Sn(x) is non-decreasing w.r.t n.

Integration: [ gdp = limy, Y7 aipn({Sn(z) = a;}).

Dominated: If u(A) =0 = v(A), VA, we say v < p.

Derivative: v « p = 3f s.t. v(A) = [, fdu. f is the derivative.

Probability Measure: Space (2, F,P), if P(2) = 1, P is a probability measure.

-If 3p st P < p, then Ips.t. P(A) = [, pdp, p is the density of P w.r.t. p.

- A set of prob. measures P on (2, F). If VP € P, P < u, — a family of p.
Random Variable: A measure function X : (Q,F) — (E, G). E: sample space.
Support: Supp(P) = {z : Pla,b] > 0, a < x < b}. If Ip, it’s {z : p(z) > 0}

Convex

Set: Ais aconvex set if Ve,y € A, 0<t<1=te+(1—-1t)y € A.

Function: Real valued function ¢(z) defined over open interval (a,b) is convex if

Va <z,y<b, plrz+ (1 -r)yl <ré(z) +(1—-r)d(y), 0 <r<1

- If ¢ is differentiable: ¢'(z) < ¢/(y), Va <z <y < b

- If ¢ is twice differentiable: ¢ (x) > 0, YVa <z < b
Model
Exponential Family: A parametric family {Py 0 € O} is said to be

s—dimensional a Exp family if the distributions Py have densities of form: pg(z) =

exp{d ;_1 1n:(0)Ti(x) — A(0)}h(x), where A(0) is to normalize the density as

A(0) = log{ [ h(z)exp[> 5_1 n:(0)Ts(x)]}.

Ex: N(u,0?): p(z) = emp{a%:c - %%12 - 2‘;—22 —log(V/2mo)}.

If u =1 is known, 7T cannot reduce to 1 term, but the dim of 7 is 1.

Natural Exponential Family: Reparameterize by n = n(0), and there is the canonical
form: p,(z) = exp{nTT(z) — B(n)}h(z). Where n is the nature parameter, and the
nature parameter space is £ = {n: [ p, du < oo}

-+ Canonical form is not unique, as we can use (cn, T'/c) instead.

- Dim of § and 7 can be different: 11 =n2 = £, d(0) = 1,d(n) = 2,d(E) =1

If n € R® and d(Z) = s i.e. E contains a s—dim. open set, we say it’s full rank.
Properties:

If Xy, -+ ,X, indep. exp. family r.v.s, the joint density is still exp. family.

Decompose: T = (Ty,- -+ ,Ts) =: (Y,U), then Y, Y |U = u are still exp. family.

Any integrable function f and interior point no € Z, E, f(X) = [ f(x)p, dp is in-
finitely differentiable w.r.t n in a neighborhood of no. The diff. can interchange

with int. Ex: take f = 1, %En[l] =0=E,{T; — 8‘3iA(77)} = E,T; — %A(n).

2 2
6n?anj E,[1] =0 = Cov(T;,Tj) = %A(n)

MGF: Let u = (u1,--- ,us), Mp(u) = Ber1TitFusTs — gAM+w)=40D  We need
n+u €E, and BT} = 25 My (w)]u=o-
Cumulate generating function: K(u) = log M(u) = A(n+ u) —
Prove NOT Exp family: Take %67‘17”‘ as an example:
Assume it belongs to some exp family, and the jointed PDF of size n > s is:
fl@ip) =27 ewp{— 2" =i — pl} = exp{3 5_ [n; () 2271 Tj(2i)] — nA(n)}
Remove h(z) by log[f (z; u)/f(z;0)] = X |@i| = X lwi —pl=--- *
Note ¢(z,p) = Y loi| — X lw — pl, 7;(w) = n;(p) — n;(0), A(p) = A(p) —
A(0), T (z) = 327y Tj(xi) Above * is ¥(z, p) = 327 7; ()T (2) — nA(w).
- If the Exp assumption is correct: if 3z,ys.t. T(z) = T(y)= Vu same R.H.S=
P(x, 1u) = P(y, pu), Yu. As a function of u, ¢ (x, ) is not differentiable at z;. Hence,
T(X)=T() = (X, X)) = Yy, Yn))-
- However, we can find liner independent 7(p1), -+ ,7(ps) by choosing p. There is
a full rank linear system. So ¥(x, pu;) = Y (y, nj),Vj = T(X) =T(Y)
If we choose min{x;} > max{u;} min{y;} > max{p;}, they can have same ¢. If

Similarly:

A(n)

the assumption is correct = same T" =- same order statistics, which is not necessary.
Sufficient: X ~ P € P, T(X) is suff. for P if the distribution of X|T doesn’t depend
on P. (parametric: not on 6). The family P or © need to be given.
Factorization Thm: X ~ P € P, and P < p. Then T is suff. iff the density can be
written as ﬁP(w) = gp(T(z))h(x), i.e. f(x) = g(T,0)h(x).
Not Unique: T is suff. and 3h(U) = T, U is also suff.
Exp Family: T is always suff. by the Factorization Thm.
Minimal Sufficient Statistic: T" is MSS iff for any other suff. statistic S exists a mea-
surable function ¢ s.t. T = ¢(S). (Function is always from more to less).

Unique: Ty, T> are MSS, by Def there is a 1 — 1 mapping between them.

Existence: Usually exists, but exceptions are possible.

Check MSS: (1)Suppose Py C P with a.s.Pg = a.s.P. If T is suff. for P and MSS

for Po, T is MSS for P.

(2)Suppose P contains PDF’s fo, f1, -+, w.r.t c—finite measure pu. Let foo =

> cifi where ¢; > 0, > ¢; =1 and T3 (X) = fi(X)/foo (X) where foo (X) > 0.

Then T = (To,T1,---) is MSS. If Vi > 1: {z : fi(z) > 0} C {z : fo(z) > 0}, use

fo instead of foo. T = (T1,T2,---) is MSS.

Remark: foo cover the union of the supports, with [ foo dp =1
P only contains countable f;. = Choose countable from P, then ues (1).

(3)Suppose P contains PDF’s f, w.r.t p and T is suff. s.t. for any possible z,y

Fo(@) = fp(y)b(x,y) for all P = T(z) = T(y). Then T is MSS. i.e. fp(2)/fp()

doesn’t depends on p & T'(z) = T'(y).

Exp. family: If 3n,, -+ ,ns € E, s.t.np1—no, -+ ,Ns —no linear indep. T'(z)—T(y) =0
is the only root of n” (T'(z) — T(y)) = 0 = T is MSS.

Such 7 exist if it is full rank.

Ancillary: V(X)) is ancillary if it’s distribution doesn’t depends on P.
Complete: T'(X) is complete iff any measurable function f:

Ep[f(T)]=0VP € P = f=0a.s.P

- If T is complete, S = ¥ (T') is also complete.

- If T is complete and sufficient, T' is MSS: If 3t is MSS, t = g(T') by definition.
Let h(t) = Ep(T|t) = Ep[h(t) — T] =0, VP € P. As comp. T = h(t)a.s.P.
Hence there is 1 — 1 mapping between T', t, T is also MSS. O

- Full Rank Exp. family: T is suff. & comp. = MSS: Proof:

T is suff. by Factorization Thm. Let p,(t) = h(a:)e"Tt_A(")
Suppose f s.t. E[f(T)] = [ f(t)py(t)dX =0, for all n € E.
Let no be a interior point of =, and there is a neighborhood N¢(no) C E,
with Vn € Ne(no)s.t.Ey f4(T) = Ey f—(T). LetEy, f1(T) =Epy f—(T) = ¢
If ¢ = 0 trivial, if ¢ > 0: %pno(t)f+(t) and %pno(t)f,(t) are also PDF.
[ eat pno(t)f+(t)d)\ _ pn(t)f+(t) dA I Pn(t)f_(t) d\ =

Let a = n — no:

“twd)\ As such a can cover N(n9), they have same MGF in a neigh-

borhood of 0.= Prg (D) f+ () = prg (W) f-(t) a.s. = f- = f1 =0a.s. O
- If not full rank, but exists linear indep.: Check MSS (3)
Basu’s Thm: If T is comp.& suff. any ancillary V: V L T Proof:
If V is ancillary, pa = P[V € A] doesn’t depend on P € P. Let na(t) = P[V €
A|T = t] also indep. of P. As Ena(T) =pa < E[na(T) —pa] =0, VP.
As comp. na(T) =PV € A|T) =P[V € A] =pa, a.s.P,ie. VLT
Estimator
Point estimator: statistic T'(X) estimate 7.
Bias: ET' — 7 Unbiased: ET = .
Loss function: L(7,T(X)): 0 x {T(X),X € R"} — [0,00), e.g. (T —7)2
Risk function: R(7,T) =Ep[L(7,T)] P € P. Expectation w.r.t. T and P.
Admissibility: T is inadmissible if 3 another estimator U s.t. R(r,T) > R(7,U) for
all P € P. And ” > 7 for some P. If no such U, T is admissible.
UMVUE: Unbiased T of 7 is ... if any other unbiased U:VarU > VarTVP € P.
Locally MVUE: VarT < VarU at some fixed P € P
*May not exist: Ex: X ~ Binomial(n,0) 7 = % If T(X) unbiased: E¢T(X) =
STk)(G)OF (1 — o)k = % When 6 — 0 LHS— T'(0) while RHS— co. Hence, no
unbiased estimator of 7.
- Estimable: if 3 unbiased estimator of 7, it is called estimable.
Jensen’s ineq.: If ¢(x) is a convex function over open interval I, and P[X € I] = 1.
Then ¢(EX) < E[¢p(X)]. If strictly convex, ” < ”, unless P[X = ¢] = 1.
Rao-Blackwell Thm: Let X ~ P € P, and S is a suff. stat. Given loss fun. L(7,a),
convex in a for any P € P. Let T'(X) be the estimator of 7 with finite risk R(r,T),
then U = E[T'|S]s.t. R(7,U) < R(7,T). Proof: (Jensen’s)
R(r,T) = Es{Ers[L(r, T)[S]} > Es[L(r,E(T|S))] = R(r, V) D
Requirement: Convex loss function: e.g. 0-1 loss is not convex.
Lemman-Scheffe Thm: Suppose S is suff. and comp. for P € P, and 7 estimable
- There is a unique unbiased estimator of the form h(S), h is Borel function.
- h(S) is the unique UMVUE for 7. Proof: estimable= 3T s.t.ET = 7 = h(S) =
E(T|S). Eh(S) = ET = 7VP € P Unbiasedv'As S comp, if IEg(S) = 7VP €
P,h(S) = g(S)a.s.P.Uniquenessv'Any unbiased U, h(S) = E[U|S] is same(as
unique). By Rao-B, R(7,h(S)) < R(r,U). UMVUE v O
Find UMVUE: get a suff & comp S first then: - Find h s.t. Eh(S) = T;
- Solve Ep (h(S)% = 7VP € P directly; Fmd unbiased T, h(S) = E(T|S)
EX1:X; ~N(/_L,c7 )/LG]R o>0:T=(X,5% )1scomp&sufffor9_(;t,a ), with

X ~ N(p, < i ), (";1)5 ~x%_;and X L % For u: EX = p, it’s UMVUE.
]E[X , it’s unbiased, and function of 7" hence UMV UE.

*] =pu?
. o o (o2v\Z _ or/2_ oT  Tl(n—14r)/2] _
o7 LetY ~ X3y, EST =E(222)? =2 S A When 7 > 1-n,
(n=1)"/2r[(n=1)/2] gr _
27/2P[(n—14r)/2]
UMVUE. Where k,, . = [n"/2T(n/2)]1/[27/20((n + r)/2)].

(Fun. of para., or non-para. dist.)

For p?

= Ek,—1,»S" = 0", it’s unbiased and function of T', hence

plo:pw:X, 07 i ky_1,_15"" as indep, Xkn_1,—15 ! unbiased and fun of T.
75t P[X, <7]=p:7=p+ ¥ Yp)o, sub result of u,o in.

EX2: X; ~ Uni(0,0): X(,) is comp. & suff. with E(ZE X)) = 6.

Approach 2: Let Egh(S) = 7, expand both sides. As a function of 0, The coefficients
should be same. Then we can get function h.

EX3: X; ~ Bernoulli(6),S = > X; is comp & suff 7 = 0(1 — 0). Assume Eh(S) =7
for all @ € (0,1) = Eh(S) = z h( Y(2)0F (1 —6)"~F = 6(1 — 6). Divide by (1 — 9)"

on both sides, and let p = 2 D> h_oh(k )(Z)Pk =p(1l+ P)n_2 = Z:l( )P
= h(0) = hm) = 0,h(K) = (1=3) /(D) = =y = MT) = TE=T-

EX4: Power series: P[X = z] = v(x)0% /c(0), v(z) known, 6 unknown.
Poisson(0):y(z) = &, ¢(0) = €®, Bino(n,p) : v(z) = () In(x), c(0) = (1 + )"
As full rank Exp Family: T =~ X; is comp & suff. PMF of T is P[T = t] =
'\/n(t)et/cn(e)) where vy, (t) = Zzl+"" Hzp=t [y(z1) - y(zn)] For 7 = g(0):

9(0) = Gy assume ER(T) = 7 then 52, h(t)va()8" = [e(6)]" PO" =
S Yn—p ()0 =322 yn_p(t — )0 where the second equality is expectation
of real number w.r.t PMF of n — p. Then h(T) = %

EX 3rd approach: X; ~ fg = 91’21(m>9), 7 =P[X; > t], where t > 0 is a constant.

X1y is comp & suff while T = I(x, >y is unbiased. The UMVUE is E[T|X ()]

. X X

ie. PIX1 > t| Xy =z = P[—L =z = p[=21 t

X > t1Xa) = 2] = Pz > 55 1X0) = 2] = Plagy > 55

t_ When s < 1, as XX1 > la.s.,, P[] = 0. When

(1) (1)

s > 1]}"[;2) > s] = [% > 5, Xy = zi] = (n — 1)]P’[X)2)

zp] = (n— DP{X1 > sX,,, Xo > Xy, -+, Xno1 > Xn} = E{P[X1 > sX,,, X3 >

Xp, o+, Xn_1 > X,]|Xn}. Int. with the pdf given above, it is 252 X (y).

h(X) = 55 XayIx g <e + IX(1)>t is UMVUE of 7.

Non—paramctric Order statistic T = (X(l), X(n)) is comp & suff. Function
PY( X1, , Xn) 1s a functlon of T iff v is symmetrlc Hence, unbiased U-statistic is
UMVUE. e.g. (EX1; 87 = 2 33(X; — X)?: Vaer,Fn(t)lexlgt F(t).

Stein’s Shrinkage. X; ~ N(0, I;C)7 where 0 is an unknown k x 1 vector. We know X is
UMVUE for 6. Tt is proved X is inadmissible when k > 3. Assume 6 = X + 1 g(X)

Lir>r-

] as

X)ﬁ) is ancillary.Let S =

Hence,

with g to be determined s.t. E[|X — eu 1 —E[|0 —0]%] > 0, for 6 € ©. Rewrite
as: E[|X - 0]%] - E[|X - 6 + q(X)H 1= —%Elg(X))? - 2E{gT(X)(X - 0)} =
*ﬁEHQ()_{)HQ — 235 E{g;(X)(X; — 0;)}. Note Y = X, with pdf f(y;0), then
(Y~—9 i) =— BY log f(Y,0). Then integral by parts, there is E{g; (X)(X,; —0;)} =

[aY 95 (Y)]. Question reduce to ]]*:Hg(X)H2 + 2 2771 E[%gj (X)] <o.

Consider 1) : RF = Rs.t. gi(z) = a—xilogw(z) w(}() al P(x). If 2171 s 211)(:1’) =
0, we can check the inequality holds, and such 7 is called harmonic functlon

e.g (@) = o]~ D, k>3, g(@) = ~ E=2a, MSE(D) < MSE(X).

- James-Stein Estimator: Biased but better than all of the unbiased ones.

Information Inequality
Interested in Squared Error Loss. T'(X) estimate 7(P), which is fun. of P € P

Fisher Information Preparation: 1. Parametric family with PDF p(z;0) € Py, and
dominated by measure p; 2. Support doesn’t depend on 60, denoted as A; 3.
6917(1 0) exists forallz € A, 0 € ©. 4. If T is any statistic with finite mean for
all 6 € ©, then the order of can be changed: 89 J Tp(z; 0)de = [T Z5p(x; 0)da.
Remark: all Exp family v/, but Uni(0,0) & 1 $e 7<z*a)/bl(m>a) X.

Fisher Information: Let X be a single sample from P € Py, where parameter space ©
is an open set in R. Suppose conditions above hold, the Fisher Information number
is defined as: I(0) = ]E{%logp(X; 0)}? = f((%logp(m; 0))%p(x; 0)dx
Multi-parameter: Fisher Information Matrix I(0) = E{Z:log fo(X)[Zlog fo x)NTy

Remarks: - Fisher Information doesn’t depend on estimator, but on parameterization.

“Let 0 = 4(n), F1 of 8 is 1(6), for n: I,(n) = [&' (m)]*1(4(n))

- © is open set: to make %p(m; 0) always exists. In Exp fam. full rank is needed.

- Interpret: Larger I(6) = more Information about § = better estimated.

Properties: - If X LY, Ix y(0) =Ix(0) + Iy (0). can be diff. dist. share same 0;

- In particular: Xq,---, X, i.id I,(0) = nI1(0);

. . . . . . o [ op(x;0) 32p(x;6)
Suppose p(z;0) tw1cs differentiable in 0, and %5 [ Z‘;QT dz = [ 65@9’1“ dz, 6 €

O, then I(0) = 7E{39%Wl09p($; 0)}. Exp family satisfy this one.

Cramer-Rao Lower Bound: T'(X) is an estimator with ET" = g(6) being a differentiable
function of 8. Suppose Py has pdf p(z; 0) w.r.t. a measure p for all 0 € ©, and p(z; )
is differentiable in 0, and s.t. & [ h(z)p(w;0)du = [ h(z)Zp(z;0)du, 0 € O, for
h=1and h(X) =T(X). Then VarT > [%9(0)} [I.(0)][Z 9(0)].

Remark: If T is unbiased and VarT = CRLB, it is UMVUE
Proof of k = 1: use VarT - Var[-Zlogp(X: 9)] > Cov(T, m,logp(X; 0)), it can be




proved that Cov = ¢’(6) and Var = I,(6) as EZ;

_ (T Zg(0))?
RHS= max ey

- CRLB is not affected by 1-1 Reparameterize. Similar to that in Fisher Information.
MLE
Definition: Let X = (X1.,) be a sample with joint PDF f(x;0) w.r.t measure pu when
6 € © C R*. For each outcome @, f(z;6) is a function of @ called Likelihood: L(6)
Let © be the closure of ©, A 6 € © s.t. L(6) = mazgeoL(0) is called a ML estimate
of 0. If 0 is a Borel function, it’s MLE of 6 .

Let g( - ) be a Borel function from 8 — R?, p < k, if g is not 1-1, o = g(d) is defined
to be MLE of v = g(0). If it is 1-1, by invariant of MLE, it’s MLE of v.
Computation: - If © is finite: Compare directly;
- Generally: Get L(0) — [(0), first derivative = 0, second < 0. Or Check by def.
Ex: Xi., = 1., observed, with X; ~ Bernoulli(p) L(p) = p"*(1 — p)"(lfi).
= (0,1), ® = [0,1]. If 0 < < 1, 7 is the unique root with second < 0, and

5logp(X;0) = 0;

Proof of multi: . Similar with k = 1, use ¢ %g(@) instead.

l(p)—>0whenp—)00rl Ifz=0I(p =Q-p" \u,p=0==z Ifz =1
I(p) =p™ /', p=1=z. Hence, X is the unique MLE on O.
MLE in Exp fam.: I(n) o< nTT—A(n), likelihood equation: %l(n) =T— iA(n) =0

2
and 677671 —Z—=l(n) = —ﬁ (n) = —Var(T) <0. If T(X) in the range of 3

T is unique MLE of u(n) = %A(n).
s.t.m = p,_l(a%A(n)), and hence 7 = p~'(T) is the MLE of 7.
Asymptotic Properties:

Conditions: 1. f(z;0) are distinct; 2.they have common support; 3.Observations
X = (X1.,) are iid with density f(z;;0) w.r.t u; 4.Space © contains an open set,
where true 6o is interior point.

Reasonability: With 1-3: For any fixed 6 # 6o Pg, [L(60|X) > L(0|X)] = 1, n = oo

Consistency: With 1-4: Suppose for almost all z, f(z;0) is differentiable in the open
set ©, then, with probability 1 there is at least 1 seq. of 0y s.t. Ve > 0, ]P’Hén — 60| >
€]*)0<:>én —p bo.

Efficiency: With 1-4, assuming Fisher Information exists and finite, together with:

B A,
As each component of u(n) is monotone

decreasing, I~ !

. %f(a:; 0) exists and continuous in 6;
- [ f(z;0)dp can be 3 times differentiated under integral sign;
- For all 6y € © there exists positive number ¢ and M (X) with Eg[M;;r(z)] <
310 (2
00, s.t. II%J%%@”,;)H < Mk (z), for all |6 — o] < c.
Then, any consistent seq. 0 : /7 (6, — 60) =% N(0, [I(6)]71).
Achieves the CRLB for unbiased estimators when n — oo.

If the root of likelihood equation is unique, it’s consistent, asymptotically efficient
whether or not it’s MLE.

Linear Model

Model Setting: Observations: (X1,%21), - (Xn,Zn), Z; :p X 1, X,

Model: X; = ZFB+ e, i=1:n. Bpx1
Matrix Form: Xy, x1 = ZnxpB + €nx1, Z : design matrix (no
Estimation: LSE: If 8 s.t. |X — ZB| = miny | X — Zb| it is LSE.
For any p vector a, aT,@ is LSE of a7 3.
Solution: |X — zb|*> = ZzTX + b7 27 2b - 2xT2b, &...=0= zT2Zb= 2" X
As it is convex in b, any b s.t. Z7Zb = Z7 X is an LSE of /3. If full rank, r(Z) = p
and 8= (272)"127X,ifnot B = (27 2)" 27 X.

Non-Full Rank case: 381 # B2, s.t. Zp1 = Zf32, the model is nor identifiable.
Reparameterize: If Z, xp is of rank r, AQ,xp s.t. Z = Z,.Q, where r(Z,) = r, and
the model can be written as X = ZB8 + e = Z,. QB + e = Z.B + €.

To estimate uaTB, only when a = Q° ¢ for some c it is meaningful, i.e.aTB = CTB.

Assumptions: A;: e ~ N(0O, O‘QIn), with unknown o2 > 0

Ay: Ee =0, Var € = 021, with unknown o2 > 0
Ay: Ee =0, Var e unknown. (Actually Ay = A = Ag)
Properties: Assume a linear model with Ags:
1. a = QT¢ for some ¢ € R" < a € R(Z) = R(Z7 Z), row space of Z;
2. If a € R(Z), the LSE a™ B is unique and unbiased for a” 3
Proof: a € R(Z) = 3bst.a=2T2b = aTf =07272(272)" 27X, BaTf =
bTZT7ZB = aTB. Unbiasedv'. If B is also LSE Z7Z8 = 27X = a"8 — a7B =
vTZzTZ2(B - B)=bT (27X — zTX) =0. O
3. If a ¢ R(Z), and A; holds, then a”' 8 is not estimable.
Proof: Assume 3h(X, Z) s.t. Eh(X, Z) = a B, then a = %aT,B = %Eh(X, Z) =
% [dx = ZTc. Contradictory. O

Ex: One Way ANOVA: n = > nj, with integers ni,--- ,nym > 0, Xij = pi + €5.
€;j are iid random error with Ee = 0, Vare = 2. Let Ji be the k x 1 vector of
ones, X; = (X1, . X;n V' and X = (X1, . X, ). Z =diag(J,,. .- . Jn_ ).

11 x 1
: unknown parameter, €; : random error;
T here).

€ is similar to X, and 8 = (Hh < uwm)T. Then ZTZ = diag(ni,---
(ZTZ)_1 = diag(ny 1, cee ,n_l) B = (X1 o Xom - ).

Linear Estimator: a linear function of X i.e. ¢ X for some fixed c.

-aT B is linear estimator with ¢ = Z(ZTZ) a “Var(cTX) = cTVar(e)e

“If a € R(Z) and Vare = 021, VarB = 02aT (27 Z) " a.

Properties With As: - 3 linear unbiased estimator of a8 iff a € R(Z).

- Gauss-Markov Thm: If a € R(Z), then the LSE a” 3 is best linear unbiased esti-
mator (BLUE) of aTB. AsVar aTﬁ is min. among all the unbiased linear estimator.

Proof: 1. Assume Jc € RP s.t. aT 8 =EcT' X =cTZB, VB ERP = a = ZT¢.

2. Asa € R(Z), 3bs.t.aTB =7 (272)B = bTZT X by def of LSE, and hence
VarcTX = Var(cTX +aTB — aTB) = Var(cTX — bT27X) + Var(a®B) +
2Cov(cTX =0T 27X, aTB) > Var(aTB) + 202{cT Zb — bT ZT Zb} as shown above
a=2%¢,T2b—-0T272Zb=0a"Tb—a%Tb=0. m]

Properties with A1' - LSE aT,é’ is UMVUE for all estimable a3
- UMVUE for 02 is 6% = (n — r) Y| X — ZB||%, r is rank of Z.

- Fir estimable a” 8 : T3 ~ N(a”8,0%a” (2T 2)~Z), (n —7)6% /0% ~ X2 _,.

Proof: 1. Asitis LSE 272 = 27X = |X - ZB|? = | X — ZB|*+ |25 - ZB)|* =
IX = 28> = 28727 X + | Z8]* + 1 ZB|?, the pdf is exp{ L 8" 2"z — S [|X -
ZBIP+ 128121+ -+ }. (ZT X, | X — ZB|?) is comp and suff for (8, 02). If estimable,
a,é is unbiased function of T' = UMVUE.

2. E|X — ZB||? = tr{VarX — VarZB} = o*{n — tr[2(2T2)" 2T} = ¢*{n —
tr((2T Z)~ ZTZ]} = o(n — ), hence unbiased function of T'.

3. As it is linear function of normal, it still normal distribution.

Consistency of LSE: Model X = Zf 4 € with As, consider LSE aT B with a € R(Z).
Let Ay[A] be the largest eigenvalue of A Suppose sup, Ay[Vare] < oo and
lim, A4 [(2TZ)"] =0, then a7 3 L aTB.ie ElaTB—aTB|? - 0,aTB —p aTB.

Proof: a € R(Z) = E[aTﬁ] = aTB, only need to check Vara®lp
aT(ZT2)= 2T VarelZ(ZT Z)"a which is less or equal Ay [Varela®(ZTZ)"a
A [Varda (27 2)7]al® — o.

Asymptotic Normality: Model X = Zfg + e with Az Suppose inf, A_[Vare] > 0
and lim,, max;<i<n ZF(z"Z)~Z; = 0. Suppose further n = 3" m; with all of m;

777/771)’

IA

bounded by some m. Random error € = (£1,---,&k), & € R™J and ¢'s are inde-
pendent.

T, 5
- If sup, E|e;|?>T° < oo for any a € R(Z), % —4 N(0,1)

ar(a

- It still holds if my = - -+ = my, &'s have same distribution.
Lemma: following is sufficient to lim, maxi<;<n ZiT(ZTZ)fz,- =0:
a). A+ [(272)") = 0and 25 (272)"Z, - 0asn -0

b). 3 “seq {a,}s.t. —22— — 1, and Z Z converge to a positive defined matrix.

Tl
E Zti En 2

Exl: X; = B0+ Piti +e;i=1:n. If —c, — d, ¢ > d*®. b) in Lemma v .

Ex2: One-Way ANOVA: maxi<;<n Z; (ZTZ) Zl =2 (Z272)7] = maac— If

min n; — oo, Asymptotic Normalityv .
Decision Theory
X: a sample from population P € P X': the range of X
A: the range of allowable actions (A, Fa): the action space
Decision Rule: A measurable function T : (X, Fx) — (A, Fa)
Ex: - Point Estimation: A is the parameter space ©
- Hypothesis testing: A is reject or accept Ho
Loss function: Evaluate action a: L(P,a): P x A — [0,+00).
Risk function: Evaluate rule T(x): Rr(P) = Ep[L(P,T(X))] = [
If P is parametric, 0 is used instead.
Comparison of Two Decision Rules: Ty is - -
- as good as: Rr, (P) < Rr,(P), VP € P;
- better than: Ty is as good as T, and Rz, (P) < Rr,(P) for some P € P;
- Equivalent: Rr, (P) = R, (P), VP € P;
- Optimal: T € T is T —optimal if T, is as good as any other T' € T}
- Admissible: If no U € T is better than T' € T, T is T —admissible.
- If there are two 7 —admissible and not equivalent rules = no optimal.

e.g. Very small risk at some P, no better rules, but not as good as others.
Randomized Decision Rule: § is a function on X X F4, s.t. Vo € X, §(z, -) is a
measure on (A, F4). i.e. If X = z is observed, we have a distribution of actions.

- Non-Randomized Rules can be regarded as d(z, {a}) = I} (T(X))

- To show ¢ is randomized rule, we need to show §(x, - ) is a prob. measure.

Loss function: L(P,d,z) = [, L(P, a)dé(z, a).

Risk function: Rs(P) =Ep[L(P,6, X)] = [ X fA L(P,a)dé(z,a)dPx

Randomized Rule with Discrete Dist.: §(zx, ) assign p;(z) to non- randomlzcd T;(x)
Ex: Non-rand. T;(X) = X. under SEL: L1 = (X —0)2, Ry = (un — 6)%? + "T

L(P,T(z))dPx

T2 if:

Non-rand. T2(X) = ¢, under Squared Error Loss: Lo = (¢ — 6)%, Ry = (¢ — )2
Randomized: T = Ty with p, T =T with 1 —p. L=pL; + (1 —p)L2, R="---

Ex: Hypothesis Testing: Py C P, P1 = P§ : Hy: P€Pyv.s. H : P € Ps.
With 0-1 Loss, and A = {0,1}, T : X — A. Loss L = 0 if correct L = 1 if not.
Risk RT(P) = P[T = 1][})6730 + P[T = O]Ipepl

Thm: Randomized & Non-Randomized: Suppose that A is convex and L(P,a)
is a convex function of a for any P € P. Let § be a randomized rule s.t.
Jallallds < oo for Vo € X. Let T(X) = [, adé(z,a), then L(P,T) < L(P,é,z) for
any x € X, P € P. Proof based on Jensen’s inequality.

Squared Error Loss, Absolute Loss, etc are convex; 0-1 Loss is not convex.
Interpret: Non-randomized T get from § will be better.

Bayes Risk: Average of risk function Ry (P) over P: rp(Il) = [, Ry (P)dIl. Where
II is a known prob. measure on (P, Fp). rp(II) is the Bayes risk of T w.r.t. II. If
T. € T s.t. rp, (IT) < v (1), VT € T. Ty is called a T —Bayes rule w.r.t II.

Minimax Rule: If Tx € 7 and suppcp Rr, (P) < suppep Rr(P), VT € T. Ty is
called 7 —minimax rule.

Recall Bayes Analysis:

X is from a population in a parametric family P = {pg : 0 € ©}, where © C R* for
some fixed k € NT. Real valued 0 is a realization of r.v. 6 ~ 7, 7 is the prior dist.
Sample X € X from Py = Pxg, it is conditional dist. of X\H = 0.

Posterior: dist. of § conditional on X = z: 7(0|z) = [ f(z1.n|0)7(0)dz1.n,
Marginal: dist. of X = z: m(z) = [ f(x1.,]0)7(0)d0

Bayes Formula: Assume P = {Py : § € ©} is dominated by measure v, and
fo(x) = % is a Borel function on (X X ©,0(Bx X Bg)). Let II be a prior dist. on
©. Suppose that m(z) = f@ fo(x)dIT > 0, IT is another measure on X. Then the

9|w fe (z)

m(z) "
= fo(2)m(0)/m(x).

Bayes Action: Let .A be an action space in a decision space, and L(6,a) > 0 be
a loss function. For any z € X, a Bayes action w.r.t. II is any d(z) € A s.t.
E[L(6,5(z)|X = z)] = mingea E[L(6, a|X = z)], the E[ -] is w.r.t posterior Pyy-
Remarks: - For each z € X §(«) minimize posterior expected loss, and hence we can
get a mapping X — A;

- If the mapping is a measurable function, it is a Bayes Rule;
- Bayes action depends on prior and loss function.

Properties: Assume conditions in Bayes Formula Thm satisfied, and loss function
L(0,a) is convex in a for any fixed . And for each z € X, E[L(0,a|X = )] < oo
for some a
1) If A C R? is compact, a Bayes action exists for each z € X;

2) If A C RP and L(6,a) goes to oo as ||a|] — oo uniformly in § € ©¢9 C © with
II(©¢) > 0, a Bayes action exists for each z € X;
3) If L(6, a) is strictly convex for each fixed 0 in a in 2), 3), the result will be unique.

Exl: X; ~ N(u,02), u ~ N(a,b), 02 is known under Squared Error Loss:

nbto? bzz+a02

Posterior dist Pglz < II and Further, if II < X\ for a measure A and

4l = 7(9), then 9|z

m(ple) = f(@rn|p)m(p)/m(z) < f(zrn|p)m(n) o« exp{— "3 1" — rro? ml}
pla ~ N(2EzEe®  bo? ) B[L|X = o] = E[(u—08)|a] = (5 LEZtar’ )2y be?
= Under SEL: 6(z) = E[u] X = a] = tZzter”

Ex2: Same setting with Ex1, but for g(u), e.g. g(u) = p?: § = E[g(p)|X = z].

Ex3: X; ~ Poisson()\), A ~ Gamma(a,b) find Bayes estimator of \7:

F(Z1m|A) < AZTe™ ™ m()) = Fb(Z) ACTLe T (A |p) oc AZTFaT e (A

Az ~ Gamma(3 x + a,b+n) =: Gamma(a’,b’), the Bayes rule under SEL is:
; ra’ ra’ T(a'+5

EN|X =a] = [° & By

Ex4: Bayes Classifier: label y; = 1, ,k, X;ly; = k ~ pr(z;).
prior 7w and under 0-1 loss the § = argmax, p(y) [ p(z:|y)-

Conjugate Prior: If a prior is in the same parametric family as the posterior, it’s ..
Exp. Family: f(z;7n) = h(z)exp{nT T(x) — A(n)} always have a conjugate prior in
the form of w(n;&,v) = g(&,v)exp{nT¢é — vA(n)}, where v is a scalar and ¢ is a
vector in the same length of 7.

Admissibility: In a decision problem, let §(X) be a Bayes rule w.r.t. a prior II.

(i) If §(X) is a unique Bayes rule, then §(X) is admissible.

(ii) If © is a countable set, the Bayes risk rs(II) < oo, and II gives positive proba-
bility to each 6 € ©, then §(X) is admissible.

(iii) Let 7 be the class of decision rules with continuous risk fun.
, rs(IT) < oo, and II gives positive prob.
T-admissible.

Remark: If T is better= T has same posterior risk as 6(X) = T is also Bayes rule.
Problem: strictly better on g, where II(©¢) = 0. No such Oy in i) ii) iii).

Bias: If §(X) is Bayes estimator of 7(6) under SEL, w.r.t. II. If §(X) is unbi-
ased, Bayes risk rs(II) = 0. Proof: under SEL §(X) = Eg[7(0)|X]. If unbiased
Ex[6(X)|0] = 7(0). Hence E[§(X)7(0)] = Eg{Ex[5(X)7(0)]|0]} = Eg[r2(0)], Sim-
ilarly E[§(X)7(0)] = Ex{Eo[s(X)T(0)|X]} = Ex[62(X)]. And the Bayes risk is

Iy ’
A +]—16—b Ad)\ —

Assume labels have

If 6(X) e T
to any open subset of ©, then §(X) is



rs = Eg{Ex[(5(X) — 7(0))?|0]} = E6*(X) + E72(0) — 2E[6(X)7()] = 0. O
Remark: Usually biased, comes from prior. But usually vanish when n — oco.
Generalized Bayes Action: The minimization in the def. of Bayes action is same as:
Jo L(0,8(x)) fo(x)dIl = ming [g L(6,a)fe(z)dIl. This def. also works when II is
not a prob, measure on ©, in with case m(z) may not finite, and we can not get
w(0|x). § solved from above is called Generalized Bayes Action.
- Improper prior: II(©) # 1 - Proper prior: II(©) =1
Ex: X; ~ N(u,02), u € © C R unknown, 62 > 0 known, under SEL:
No Information: If © = [a, b] we can set II = Uni(a,b). But if © =R, let 7(0) =1

2
for all 6, it is improper. Minimize fR ufa)2(2ﬂa2)_"/26mp{7%}du is same
with minimize: [, (n — a)?exp{— 557 >z — 2)% 4+ n(z — u)?]}du Let 0%[ ‘1=0,
Jp nexp{—n(@-—p)?/(20%)}ydn _ _ _
Jr cap{—n(z—m)2/(20%)}dn IfII = N(a,b),

2
_o® _ _nb _
popies L + nh+62 T, converge to £ when b — oo.

Admissibility of Generalized Bayes Rules: Suppose that © is an open set of R*. Let
T be the class of decision rules having continuous risk functions. A decision rule
T € T is T-admissible if there exists a sequence {II; } of (possibly improper) priors,
which give positive measures to any open set, such that
(a) the generalized Bayes risks v (II;) are finite for all j;

Ty i) 0, where 7} (II;) = infr ro(IL;)

;00 ) = intr rr(ll;),
and Og, , = {0 € ©: [0 — 0o < n} with II;(Og, , ) < oo for all j.

Proof: Suppose T is not 7 —admissible. Then there exists Top € T s.t. Rr,(0) <
Rr(0) for all 6 and Rr,(60) < Rr(6o) for a g € ©. From the continuous
Rry(0) < Rr(0) — e for 6 € Oy, ,,» for some constant € > 0,1 > 0. Then
rp(I;) — v (IL;) > 77 (1) — rry (IL;) > €Il (O@O_n)7 contradictory with (b). O

Ex: X; ~ N(p,02), u ~ N(a,b), 02 is known under SEL: §(X) = X
Risk function is continuous in p if the risk is finite. Let IT; = N (0, j),

the Bayes rule is §(z) = it is

(b) for any 6p € © and n > 0 hm

Rs(pu) = VarX = é fixed, and rs(II;) = "72 Consider Bayes rule w.r.t. II;:
nj v 17277.2 (74 L2 * (7271 L
65 = an:cS? X, R5j (n) = (n;+t2)é > Ty ;) = Tag’ T;(Oug.m) = %‘b/(gj)

for some &; € ((no — 1)/V7, (o +1)/V/37)- § — 0, (b) satisfied = X admissible.

Empirical Bayes: Estimate the hyperparameter with historical data or the current
data z, if historical data is not available. This method is called Empirical Bayes
View z from marginal dist. P = [g Pp(x)dIlg¢. =Find MLE of ¢.

X~ N(p,,o'2), n~ N(a,b), o2 is known under SEL, Iy = N(O, o’%), with &€ = O'g
= fp F@imlp)m(plod)du- - - 1(oF) o (nof + o)/ exp{— ﬁi}

2(n00+0
MLE of ¢f is 02 = max{0,% — 0®/n}.
Hierarchical Bayes: put a prior on hyperparameter.
Computation issues: we need E,(7) where the expectation is w.r.t. posterior p(6)
MCMC: - Generate iid 6™ from a pdf h(0) > 0 w.r.t v
- By SLLN, as m — o0, E,(7) = % Zj T(i’y();}(f’l —a.s. [ T(f)(’ége) =E,(r).
Minimax Rule
Definition: T\ = arginfr suppco Rr(0)
Control the worst case, but maybe not that good in other case.
Find a Minimax Rule: Let ©g C ©, and T is minimax of 7(0) when 6 € ©¢. If
supoco RT(0) = supgeo, Rr(6), T is minimax on ©. Proof: By def.
VTo # T : suppco RT(8) = supgeo, R1(0) < supsco, Rt (0) < supgeo Rty (0) O
Similarly, if T' is unique minimax on O also unique on ©
Minimaxity of a Bayes rule: Let II be a proper prior on © and T be a Bayes rule of
7(0) w.r.t. I If Rp(0) < [ Rp(0)dIl = rp(II), VO € ©. ie. T has constant risk
function or bounded by Bayes risk. Then: (1) T is minimax
(2) If in addition T is the unique Bayes rule, it’s also unique Minimax rule.
Proof: Let § be any other rule supy Rs(6) > [ Rs(6)dIl > [ Ry (6)dIl > supy Rr(6)
The last > comes from "V0 € ©7. If unique, second > is >, i.e. unique minimax O
Corollary: Let IT be a proper prior on © and T be a Bayes rule of 7(0) w.r.t. II. If
JO¢ s.t. Rr(0) is constant on Oy which equals to supgee Rr(0), then,
- If II(©p) = 1, T is minimax; - If in addition T is the unique Bayes rule w.r.t.
II, it is also the unique minimax estimator. Proof:
II(©g) = 1 = T is minimax on ©¢ (proved above) = minimax on ©. O
Ex: X; ~ Bernoulli(p) estimate p under SEL, with prior p ~ Beta(a, 3):

plz ~ Beta(a + Xz, 8 +n — S a), T = E[pla] = 7555

— _ —_ 2 .
Ry(p) = 22U=DEeopemid) 1ot o = § = Vit/2, Rr(p) = 1/[4(1 + V)] is
constant. = T = % is the unique minimax estimator.

Remark: Minimax estimators are irrelevant with prior, but depends on loss function.

Limit of Bayes rules: Let II; j = 1,2, be a seq. of priors and r; be the Bayes
risk of a Bayes rule of 7(0) w.r.t. II;. If for a rule T with supgRr(0) < oo,
liminf; r; > sup, R7(0), then T is minimax.

Corollary: Let IT; j = 1,2,--- be a seq. of priors and r; be the Bayes risk of a Bayes
rule of 7(6) w.r.t. II;, If a rule T" with constant risk function Rr(6) = r < oo, and
liminf; r; > 7, then T is minimax.

Ex: X; ~ N(u,02), 8 = (u,0?) is unknown under SEL:
First consider © = R x (0, c] 90 =R x {c}. On O :
Recall: u ~ N(0,j), r; = ”J+C
If © =R x (0, 00) sup goes to oo, it’s meaningless.

Hypothesis Testing
Sample X1., ~ P € P. Test: Hy: P € Py v.s. Hi : P € P1, Po C P, P1 = P\Po

If Py contains only 1 element, we call it simple null hypothesis; otherwise composite.

Test is a statistic T(X) takes value in [0,1]. When X = z is observed, we reject Hg
with probability T'(z). If T(X) € {0,1} a.s.P, it’s non-randomized.

Errors: Type I error P[reject Ho|Hg is true] i.e. Eo[T]

Type II error Placcept Ho|H, is true] i.e. E1[1 — T
Power function: Br(P) = Ep[T(X)], it is a function of P € P
Level o suppep Br(P) <« Size oz suppep, Br(P) =«

Uniformly Most Powerful Test (UMP)

Test T of size o is a UMP test iff B, (P) > Br(P) for all P € P; and T of level o
If U(X) is a suff statistic for P € P, for any test T'(X), E[T|U] is a test, with same
power function as T. As E[E[T'|U]] = E[T|VP. To find UMP, consider ¢ (U) only.

Neyman-Pearson lemma: Let Py = {Py}, P1 = {P1}, f; be the pdf of P;

(i) (Existence). For every «, there exists a UMP test of size «, given by T, where
v € [0,1], ¢ > 0 is to be determined as Eo[T%(X)] = a.

1 fi(X) > cfo(X)

v f1(X) = cfo(X)

0 f1(X) < cfo(X)
(ii) (Uniqueness). If Ty, (X) is a UMP test of size «, then 1 a.s.P
Can only differ on B = {z : f1(z) = c¢fo(z)}. Tk is the simplest form of randomized.

Remarks: - Both null and alternative are simple
- UMP exists, and unique except on B -If v(B) = 0 = unique UMP
- If v(B) > 0 = Random, but can be constant v on B; A= £1(X)

fo(X)
Proof: Assume a € (0,1).
(1) v, ¢ exist: EoT, = Po[fl(X) > CfO(X)] =+ ’Y]P’o[fl(X) = Cfo(X)] Let
Y(t) = Pol[f1(X) > tfo(X)] it is non-increasing with (0) = 1, v(co) = 0. Thus
3c € (0,00) s.t. v(c) < a < v(c—). Set v = ﬁ%lﬁ(c,)#w(c)). Note that
Y(e=) — v(c) = Po[f1(X) = cfo(X)]. Such =, c satisfy.
(2) T is UMP: another T s.t. EoT < a: As Ty > T = T\ > 0, f1(X) > cfo(X),
and Ty < T = T, < 1, f1(X) < cfo(X), there is [Ty — T)|[f1(X) — cfo(X)] >0
ST« = T)frdv = Br, (1) = Br(1) = ¢ [[T. — T]fodv = c[fr, (0) — fr(0)] >0
(3) Uniqueness: Define A = {z : fi(z) # cfo(x)}. Similarly [T\ — T|[f1(X) —
cfo(X)] >0 when X € A, [-]['] =0 when X ¢ A. As both UMP test with size a:
ST = TN[f1(X) = cfo(X)]dv = Br, (1) = Br (1) — c[Br, (0) — Br(0)] =
= v(A) =0 = Tx # Ty« only on B
Procedure: A = f1(X)/fo(X) — if X monotone in U(X) - U <dor U >d 1n§tead
Ex: X is a sample of s1ze 1, Pp = N(0,1), P,: e I® I/2/4 UMP test of level a < 1/3:

A(X) = /Fexp{= le} monotone in (|z] — )2 As it is continuous, v(B) = 0.
Then A > ¢ < |z| >t0r\x| <1-—t.

Ex: X; ~ Bernoulli(p), Ho : p = po v.s. Hi : p = p1, where 0 < pp < p1 < 1:
F@1mp) =p="(1—p)" " 2% Let Y = 3 X, A = (%)Y(tigé)"fv’/ increase in Y.
Find v, m s.t. a =Po[Y > m] + 4Po[Y = m]

Remark: - T, relies on pg only, not on p;.
- For any p1 > po, the test T, has level «, and it is a UMP test for H;
- Therefore T is a UMP test for testing Ho : p = po v.s. H1 : p > po

Lemma: Suppose that there is a test T of size a s.t. for every Py € Py, Ty is UMP for
testing Ho versus the hypothesis P = P;. Then T, is UMP for testing Ho v.s. H;.
Extend to a family: | satisfy this.

Monotone Likelihood Ratio Family: Suppose X ~ Py with 6 € ©. Suppose that
P ={Py : 6 € ©} is dominated by a measure v, with PDF fg = dPy/dv. For a
statistic Y (X), P has monotone likelihood ratio in Y (X) iff, for any 61 < 62:

On supp(fo,) U supp(foy), fo,(x)/fo, (x) is a non-decreasing function of Y (x).
Remark: When monotone in Y, UMP given by NP-Lemma, can be defined by Y > d
and the calculation is based on 61, doesn’t depends on 5.

Lemma: Suppose X ~ Py with § € ©, and P has monotone likelihood ratio in Y (X).
If 4 is a non-dec. function of Y , then g(0) = E[¢)(Y)] is a non-dec. function of 6.
Proof: Let 61 < 62, h(y(z)) = f92(w)/f91 (z), Let A = {x : fo,(x) > fo,(x)} =
(w5 h(y(@) < 1}, B = {2 : fo, (&) < fo, (@)} = {o : h(y(®)) > 1}. Since h(y) is
non-decreasing in y, a = sup, ¢ 4 Y(Y(z)) < b = infrep (Y (z)). g(02) — g(61) is
J (Y (2))(foy (x)—fo, ())dv > a [, (fo, (x)— fo, ())dv+b [5(fo, (x)—fo, (x))dv =
(b = a) [g(foy (@) — fo,(x))dv > 0, as [,(fo,(x) — fo, (x))dv + [5(fo,(x) —
fo. (x))dv = [ fo (2)dv — [ fg, (x)dr = 0. O

2

Ryg = - = r constant.

5 — r. Hence, X is minimax on ©¢ = also on ©.

1 f1(X) > cfo(X)

T.(X) = 0 f1(X) < cfo(X)

Tou(X) = {

is suff.

‘P=DP1

Ex: Let 6 € © C R, n(0) non-decreasing function of §. Then the one-parameter ex-
ponential family with fo(z) = exp{n(0)T(x) — A(0)}h(x) has monotone likelihood
ratio in T'(X).

Ex: X; ~ Uni(0,0) where § > 0 PDF of X1.,, is fo(z) = 0~ "I(0,6)(T(n)), for 61 < 02,
only need to consider (0,01) U (0,02) = (0,02) fo,(x)/fe, (z) is non-dec. in z(,).

Theorem: UMP of Monotone Likelihood Ratio Family:

Suppose X ~ Py with 0 € ©, and P has monotone likelihood ratio in Y (X). Con-
sider the testing Hg : 0 < g v.s. Hy : 0 > 6g, where 0 is a given constant.

1 Y(X)>ec
(1) There exists a UMP test of size , which is given by T.(X) = q¢v Y(X)=c ¢
0 Y(X)<e

and v are from Br, (60) = «, and B (0) = E¢T is the power function of a test T'.
(2) Br, (0) is strictly increasing for all §’s for which 0 < 87, (0) < 1.
(3) For any 6 < 0, T, minimizes 87 (0) (type I error of T) among T s.t. S7(0g) = a.
(4) For any fixed 01, T, is UMP for Hg : 0 < 01 v.s. Hy : 0 > 01, with size 87 (01).
(5) Assume that Po[fo(X) = cfe,(X)] = 0, for any 6 > 0 and ¢ > 0. If T' is a test
with B (00) = Bry(0o), then for VO > g either fr(0) < Br,(0) or T = Twa.s.P
Remark: + optimal: 6 < 6y minimize Type I; § > 6y minimize Type II

- Uniqueness: When Py [fp(X) = cfg,(x)] = 0 holds for any § < 69 and ¢ > 0,
and the power at 0 = 6 are equal.

Proof: (1) Ty is UMP for Hg : 0 = 6y v.s. Hy : > 0 from Lemma above, and S,
is non-decreasing in 6 as T is non-decreasing in Y (Another Lemma). = T, is size
aon {6 < 0p}. Meanwhile any level o, T, for Hg : 0 < 6y v.s. Hy : 0 > 0g is also
level o, T, for Hy : 0 = 0 v.s. Hy : 0 > 6. As T, UMP in the ” = ” test = more
powerful on ©1 = also UMP of the ” < ” test.

2)

(3)The result can be proved using Neyman-Pearson lemma with all inequalities re-
versed.

(4) Similar to (1)

(5)

Ex X; ~ Ubif(0,0) 6 > 0. Testing Hg : 0 < 0p v.s. H1 : 0 > 0y
Y = X(n), monotone likelihood ratio, UMP is T\, o = B, (6o) = % ffo 2" Yz =

1—¢"0;" = ¢ =0p(1 —a)/™. For 6§ > 6o, Br,(8) =1 — 636 "(1 — ). Another
test T' = O‘I(X(n)ﬁeo) + I(X(n)>90)' Same power function when 6 > 6.

As in this case JP’{fg1 = feo} = 1, is not contradictory with the unique lemma.
One Parameter Exponential Family:
fo(x) = exp{n(0)T(z) — A(0)}h(x), n is strictly monotone function of 6.
- If n is increasing, then T given by Monotone Likelihood Ratio Theorem is UMP
for testing Ho : 0 < 0y v.s. Hy : 0 > 69
- If n is decreasing or test is Ho : 0 > 6o v.s. H;
by reversing inequalities in definition of T.
Ex: X; ~ N(p,,o’z), p € R unknown, o? is known. Hy : < po v.s. Hy : p > po:
Y=X,n=2 =T =Ix50,) = Ca =0Z1-a/Vn + po, where Zo = @~ ! (a).
- Discuss: dist of Y is needed. If it is continuous the test is non-randomized.
Ex: X; ~ Poisson(6) with unknown 6 > 0, Ho : 0 < 0p v.s. Hy : 6 > 0:
Y = > X ~ Poisson(n@) = log 6 =3 e"%0 (nog)? £"%0 (nog)°
) n 0gd S« Zj:c+1 5T + o
a = Z;’;C+l[e"90 (nBo)’ /j!] for some integer c it is non-randomized.
Two Sided Tests: For fixed 0g, 601 < 65 :
(1)Hp : 0 < 61 or 6 > 05 V.S. 1:01 <6 <6y
(2)Hp : 61 <6 < 62 V.S. 1:0>61 0or 0 <0 Only UMPU
(3)Hp : 6 = 6g V.S. 1:0# 0g Only UMPU
Generalized Neyman-Pearson lemma: Define the class of tests:

: 0 < Op the result is still valid

 if

UMP in 1l-para exp.

Let fi,---, fm+1 be measurable on (RP,B) and also integrable w.r.t a measure
v. For given constants t1,---,t, let T be the class of measurable functions
¢ : RP — [0,1] satisfying [ ¢fidv < t;,i=1,---,m, and Ty be the set of ¢’s in T

satisfying the condition with all inequalities replaced by equalities.

Generalized Neyman-Pearson lemma: Result:
If there are constants c1,--- , ¢ S.t.

bu(z) =41 fmyr(x) > erfi(e) + -+ emfm(x)
- 0 fmtyi(z) <cifi(z)+---+cemfm(z)
is a member of 7o, then ¢, maximizes [ ¢ fm41dv over ¢ € To. If ¢; > 0 for all i,
¢+ maximizes [ ¢fp1dv over p € T
Lemma: fq,---, fm+1 and v given by the generalized Neyman-Pearson lemma. Then
the set M = {([ ¢fidv, -, [ ¢fmdv) : ¢ : R — [0,1]} is convex and closed. If
t1, -+ ,tm is an interior point of M, then there exist constants c1,--- ,cm s.t. the
function ¢, (x) defined in the generalized Neyman-Pearson lemma is in Tp.
Proof: Suppose ¢. € To, Vo € To (¢ — ¢)(fmy1 — 2o cifi) >0
Therefore [(¢x—@)(fmi1—> cifi)dr > 0= [(¢u—) fmi1dv > c;i [(¢pe—) fidv.
Hence, ¢. maximizes f ¢ fm41dr over Y € To, If ¢; > 0 the first line still holds. O
UMP Tests for Two-Sided Hypothesis:
X ~ fo(x) = exp{n(0)T(x) — A(O)Yh(x), 1-parameter exp. family.



(a) For hypothesis (1), a size « UMP is given as following, where c;,~; are s.t.
a = B, (61) = Br. (02). 1 a<Y(X)<eco
T.(X)=<v Y(X)=ci,i=1,2
0 Y(X)<ciore2>Y(X)

(b) T minimizes Br(0) over 0 < 61, 0 > 03 and T s.t. a = Br(01) = Br(02)

(c) If Ty and T, are two tests given by (a), Br, (01) = Br,, (01), and if the region

{T«+« = 1} is to the right of {T\. = 1}, then Br,(0) < Br,,(0) for 6 > ©; and

Br,(0) > Br,,(0) for 6 < ©1. If both T, and T, satisfy (a) and have power « at

6 = 61,02, then T, = Ti.a.s.P.

Proof: (a) generalized Neyman-Pearson Lemma above. Start from Ho 0 =

01,02 v.s. Hy : 0 = 03, where 01 < 03 < 02. (B:+(01),B¢(01)) is interior point.

= ¢1,C2 -+ T based on Y doesn’t depends on 63 = From 3 points— testing (1).

(b) Consider 03 < 61 similar with above. And 63 > 65 - - -
Uniformly Most Powerful Unbiased (UMPU) Tests:

Given «. Test T for Ho : P € Py v.s. Hy : P € P17 is unbiased of level « iff

Br(P)<a, PPy and Br(P)>a, PP

A test of size a is UMPU iff it is UMP among the unbiased tests of level a.
Similarity: hypothesis: Hg : 6§ € ©¢ v.s. Hy : 0 € ©1. Let o be a given level of

significance, and ©¢; be the common boundary of ©¢ and ©1. i.e. common limit

points of ©p and O1.

A test T is similar on g if and only if 87 () = a for all § € Og;.

Remark: - Transform P to € to make it easier to find the boundary;

- Unbiased are usually similar. Work with similar tests are much easier.

Continuity of the power function: Sr(0) is continuous in 0 iff V{0;}52, C ©, 0; — 0

implies Br(0;) — Br(0), where P; € P and 6; = 0(P;).

If parametric, B is just a function of 0, the continuous is just that of Br(0).
Lemma: Hypothesis: Hg : 0 € ©g v.s. Hy : 0 € ©1 Suppose that, for every T, Sr(P)

is continuous in 0. If T, is uniformly most powerful among all similar tests and has

size «, then T is a UMPU test.

Proof: continuous: {unbiased} C {similar}, T, is size @ and more powerful than

fixed test T'= o = T, unbiased and UMP in a larger set = UMPU O
Neyman structure: Let U(X) be a suff statistic for the boundary P = {P: 0 € ©¢1}

and let Py be the distribution of U for P € P. Test T is said to have Neyman

structure w.r.t. U if E[T|U] = «, a.s.P.

- If T has Neyman structure, ET = E[E(T|U)] = o VP € P =T is similar on G .

- If all tests similar on ©¢; have Neyman structure w.r.t. U, then working with
tests having Neyman structure is the same as working with tests similar on Gg;.
Lemma 6.6: Let U(X) be a sufficient and complete statistic for P € P, then all tests

similar on ©p; have Neyman structure w.r.t. U.
Theorem: UMPU tests in exponential families:
In Exp family with PDF fq 4(x) = exp{0Y (z) + ¢TU(z) — (6, $)}
0 is real valued, ¢ can be a vector, ¥ € R and vector U are statistics.
(1) For test Hop : 0 < g v.s. Hy : 8 > 0p a UMPU test of size « is given as:

1 Y >eU)  where c(u) and v(u) are Borel functions
T.(Y,U) = YU) Y =c(U) s.t Eg, [T«|U = u] = « for each u
0 Y < ¢(U)
(2) For test Hg : 0 < 61 or 6y > 02 v.s. Hi : 01 < 0 < 02 a UMPU test of size « is
given as:
1 e (U) <Y < e2(Wdpere c(u) and v(u) are Borel functions
T.(Y,U) = ¢7U) Y =c(U) s.t Eg, [Tw|U = u] = Eg,[TW|U = u] = a

0 otherwise for each u

(3) For test Hy : 61 < 0 < 63 v.s. Hy : 0 < 01 or 6 > 03 a UMPU test of size « is

given as:
! otherwise where c¢(u) and y(u) are Borel functions
T.(Y,U) = §v(U) Y =ci(U) st By [Tu|U = u] = Eg,[Tu|U = u] = «
0 cyy <Y < cyqpyfor each u

(4) For test Hy : 0 = 0y v.s. Hy : 6 # 6y a UMPU test of size « is given as that in
(3), but with Eg( [T |U = u] = o and Eg [T, Y|U = u] = aEg,[Y|U = u] for each u.
Remark: This result only for Exp family, and no Uniqueness is assured.

Proof: Given U = u, Y ~ f() is 1-parameter. in (1)-(4) find ©¢1, and U comp & suff
on it = Neyman structure = UMP among them < UMP among similar = UMPU

Ex1 Poisson: X1 ~ P(A1), X2 ~ P()\2), rewrite the density as:
p= ch}){xﬂog% + (z1 + z2)log A1}, and let 0 = logi—? Y = X5
Test Hyp : A1 = Ao v.s. Hi : A1 # Ao & Hp : 0 = 0 v.s. Hy : 6 # 0, with
U= X1+ Xz, ¢ =log A Find a UMPU: P[Y = y|U = u] = (;;)p¥(1 — p)“~ " where

p= li% on the boundary 6 = 0 dist. of Y is known. We can find the UMPU.

Ex2: Binomial: X; 1 X», X; ~ Binomial(n;,p;), ni,n2 are known, pi,p2 not.
PMF is ("1)("2)(1 — p1)"1 (1 — po)"2 explzalog22i=P1)

1 4 (24 + 22)log

p2(l—p1)

Hence, 6 = p1(1—-p2)’

be found.

Remark: UMP amd UMPU are very good, but may not exist is some cases.= Find
some test not bad and always exist.

Likelihood Ratio Test: Let L(0) = f¢(X) be the likelihood function. The likelihood
ratio is defined as A\(X) = SUPgeco, L(0)/supgee L(0), where X is the sample with
some size n. For test Hg : 6 € ©g v.s. Hy : 6 € ©5.

Likelihood ratio (LR) test is any test that rejects Ho iff A(X) < ¢, where ¢ € [0, 1].
Remark: - If A(X) is well defined, then A\(X) < 1, and tends to 1 if Hy is true;

- Let 6 be the MLE of 0, and 6y be MLE on ©y. Then A(X) = L(fy)/L(6);

© For given a if 3eq s.t. supyece, Po[AMX) < ca] = a, size a test can be defined.

Properties: When a UMP or UMPU test exists, an LR test is often the same.
Suppose that X is in a 1-parameter exp family: fo(z) = exp{n(0)Y (z) — A(0) }h(z),
where 7 is a strictly increasing and differentiable function of 6.

(1) For test Ho : 0 < 0p v.s. Hy : 8 > 0 there is an LR test whose rejection region is
the same as that of the UMP test.

(2) For test Hg : 0 < 61 or g > 02 v.s. Hy : 01 < 6 < O3 there is an LR test whose
rejection region is the same as that of the UMP test.

(3) For testing the other two-sided hypotheses, there is an LR test whose rejection
region is equivalent to Y (X) < ¢ or Y(X) > c2 for some constants ¢; and ca.

Proof: Prove (1) only. (2) and (3) are very similar.

Let 0 be be the MLE of # € ©. Recall for exp family dist, %log L(0) = Y(z)—B'(n),
which is a strictly decreasing function shown before. Therefore, the MLE exists and
is unique for 7. Since 7 is strictly increasing of 6, so the MLE of 0 exists and unique.
And L(0) ~if 0 <0, L(0) \if 0 > 0. Thus A =1if 6 < 0p and A = L(0p)/L(0) if
6 > 6p. Then X < c is same as 6 > 6p and L(60)/L(0) < c.

As 7 is s.t. Y(X) = B’(n), with B’ strictly /'= 4 7inY =60 ~inY
Consequently, for any 6y -%-[log L(6) — log L(60)] = n(6) — n(6). Thus,

log [L(80)/L(6)] / in Y when 8 > 0, and N\, when § < 6.

Hence, for any ¢ € (0,1) A < ¢ < 0 > 6y and L(6y)/L() < ceY >d |

Ex: X; ~ Uni(00), Ho: 0 =00 v.s. H1: 0 # 00: A(X) = [X(n) /001" I(x ) <00)
Reject when A\ < ¢ & X(,) > 6o or X() < ¢ "0p. Take ¢ = a it’s size a.

Ex: Normal Linear Models: X ~ N, (Z3,0%I,). Ho: LB =0wv.s. Hy : L # 0:

Bo is LSE under Ho, 62 = | X — Zfo|?/n. supoco, L(0) = (27\'6’3)7’”’/267”/2
5112
LR test is A = [62/62]"/2 = (%)"m. Select ¢ s.t. supgeo Po[A < c] < a
—ZPBo

Especially, we consider a two-sample problem. n = ni; + na2, 8 = (p1,p2) and

Z = diag(Jnq, Jny) with L = (1, —1) to test u1 = p2. A < ¢ < [t| > co:

HX) = {(X1 = X2)/y/ni " 4715 3/ {[(m = 1)ST + (n2 — 1)S3]/(n1 + n2 — 2)}
Regularity conditions: Let Xi., iid from a PDF fy with a measure v where 6 € ©

and © is an open set in R®. The regularity conditions below for the asymptotic of

MLE will be assumed:

(1) fo(z) is twice continuously differentiable in 6 and s.t.: (% [ gedv = [ %ggdu.

for go = fo(x) and 9 fg(x)/00;

(2) The Fisher information matrix, I1(6), based on X is positive definite;

(3) For any given 6 € ©, there exists a positive number ¢y and a positive function

82log f~y (z)
hg s.t. ]Ehg(X1) < oo and BA(QT’YT

Y + X2, U = X1 + X2. Transform the test into § UMPU can

sup
villv—0l<co
of X1, where |A| = /tr(AT A) for any matrix A.

Thm: Asymptotic LRT: Regularity conditions 1 hold, Suppose that Hg : 6 = g(9),
where 9 is a (k — r)-vector of unknown parameters and g is a continuously differ-
entiable function from R*~" to R* with a full rank 8g(9)/89. Then, under Ho:
—2log Ay, =% x2%: 7 = dim(0) — dim(9), and reject A, < ewp{féxia}

Wald Test: Ho : R(6) = 0: W, = [R(D)]T{[CO)T[I.(0)]1C(0)} " *R(H). Where
C(0) = OR(0)/80, I,, is the Fisher Inf. Matrix of X1.,, and § is the MLE or RLE.

Score Test: R, = [sn(é)]T[In(é)]71[sn(é)]. Where s, (0) = dlogL(0)/00 is the score
function, and 6 is an MLE or RLE under Ho : R(0) = 0

Remark: They are asymptotically same, and reject when W, R is large.

Thm 6.6: Under regularity conditions:

(1) R(#) continuously differentiable function from R* to R™, W,, —¢ X2, reject when
Wy > X%,a? where Xf‘,u is the 1 — o quantile of x2.
(2) Result for R,, is same with that of W,, above.

Confidence Set: Let X be sample from a population P € P. Let 6 = 0(P) be the
parameter of interest. Let C'(X) be a random set determined by sample X. The
random set C'(X) is said to be a confidence set for § with confidence level 1 — a,
or a level 1 — «a confidence set, if infpcp P[0 € C(X)] > 1 — a. The exact infimum
infpep P[0 € C(X)] is called the confidence coefficient of C(X).

If C(X) is of the form: [0(X), 6X], it’s confidence interval.
[0(X), ), it’s confidence lower bound. (—oo,#X], it’s confidence upper bound.

Construct a Confidence Interval:

| < ho(x) for all z in the range

Pivotal Quantity: If the dist. of R(X,0) does not depend on 6, then it is a pivotal.
Thm: Pivotal Quantity: Suppose that P € P = {Py}. Let T(X) be a real-
valued statistic with CDF Fr ¢(t) and let o; and a2 be fixed positive constants
st a1 +ax=a < 1/2.
(1) Suppose Fr (t) and Fr g(t—) are non-increasing in 6 for each fixed ¢. Define:
0 = sup{0 : Fro(T) > a1}, and 8 = inf{0 : Fre(T—) <1 — az}. [0(X),0X] is
1 — « confidence interval;
(2) Suppose Fr g(t) and Frg(t—) are non-decreasing in 0 for each fixed t. Result
is 0 = sup{0 : Fro(T—) <1—as},and 8 = inf{0: Fre(T) > a1};
(3) If continuous, Fr ¢(T) is a pivotal quantity. Result is same.
Proof: (1): 0 >0 = Fro(T) < o1, 0 < 0 = Fro(T—) >1—az. P@ <6 <0]=
1 7P[FT,9(T) < 041] 7P[FTyg(T*) >1-— az] >l—a; —a2=1—a.
Ex: X, ~ Poisson(0), T = > X ~ Poisson(nf) is comp and suff, and we can
find Fro(t) = §.=0 e’"e(nQ)J /4!t = 0,1,---, which is continuous in 6, 8 is the
unique root of Fr o(T) = a1. As Fro(T—) = Fr¢(T — 1), 6 is the unique root of
Fr,o(T—1) =1—az whenT > 0and § = 0 when T = 0. As g [° X'~ 'e “de =

Sise MW/l 8= (2n)_1X§(T+1),a17 0= (2”)_1X22>(T),1—a2

Inverting acceptance regions of tests: Consider testing problem Hj :
H; T be a size o test, and the acceptance region is Ar(0g) = {x :
For every 6 € ©, Ar(6) is a function from © to subsets of X.
C(z) ={0:xz € Ar(0)}. If all Ty is level a, C(x) is level 1 — a CI.
The other direction: C(X) be level 1 — a CI, A(0g) = {z : g € C(X)} is subset of
X. T =1-"Tapy)(X) is a level « test for Ho.

Ex: l-parameter exp family: fo(z) = exp{n(0)Y (z) — A(0)}h(x), n /7 strictly.

Testing Ho : 0 = 09 v.s. Hi : 0 > 0o there is UMP T, based on Y. ac-
cept set: A(0g) = {z : Y(x) < ¢(00)} ¢(0) non-dec. in 6 can be shown. Then
C(z) ={6:¢c(0) > Y(x)} is a lower bound. If Y is continuous, conf. coef. is 1 — a.
- For testing Hg : 0 = 0y v.s. Hy : 6 < 6p: Upper bound.

- For Hyp : 0 = 6g v.s. Hy : 0 # 0p: Confidence Interval.
Evaluation: Better test should have better CI, but hard to say which is better.
Length Criterion: Consider CI’s of a real-valued 6 with the same conf. coef.

- The shorter the better - Uniformly shortest may not exists

- Find the best among a class of CI’s.

Shortest CI for Pivotal: Consider real-valued parameter 6 and statistic 7'(X)

(1) Let U be a positive statistic s.t. (T — 0)/U is a pivotal with pdf f that is
unimodal at zo. Consider CI’s for §: C = {[T' — bU, T — aU] : f: fdr =1—a}. If
[T —b,U,T — a,U] € C, with f(ax) = f(bs) > 0,a, < o < by, it’s shortest in C.
(2) Suppose that T" > 0, & > 0, T/6 is a pivotal with PDF f, and that zgf(:v)
is unimodal at zg. Consider C = {[T/b,T/a] : a,b > O,f; fde = 1 — a} If
[T/bs,T/as] € C,a2 fax) = b2 f(bs) > 0,ax < zo < b, it’s shortest in C.

- Unimodal: non-decreasing when x < x, non-increasing when = > ¢

Proof: (1) length of CI'in C is (b — a)U. When a < b,b — a < by, — ax, if a < ay:
© a < b < a. by unimodal: f; fdz < f(ax)(b—a) < f:: fdr=1—«

- a<ay <b< b, and a > a, is similar. (2) change = to 1/y can be proved O

Ex: X; ~ N(u,0?), if 0% unknown /n(X — p)/S ~ t,_1 is the pivotal; if o2 known
Vn(X — p)/o ~ N(0,1). It is the shortest among that in C.

UMA CIL: Let § € © be unknown parameter, and ® C © where true § ¢ ©’.
C(X) with conf coef 1 — a is ® —UMA iff for any other level 1 — a set C;(X),
Vo' € O P0' € C(X)] < P[0’ € C1(X)]. Tt is UMA iff ©' = {6}°

Remark: Less prob. to cover false . For lower bound can use ® = {§’ € © : ' < 6}

Thm UMA: C(X) be conf set for 6 by inverting acceptance regions of non-randomized
tests To, for Hy : 6 = 0 v.s. Hy : 0 € @go where @90 is a set related to 6.

If for each 0o, Tp, is UMP of size a, then C(X) is ©'—UMA with conf coef 1 — «,
where ©' = {6’ : 0 € ©,/} region of 0’ that reject true 6.
- In 1-para exp fam with MLR, UMP exists hence UMA exists.

Proof: Assume another level 1 —a C1(X) test Tigy (X) = 1 —Ta, (9, (X) is also level
a. For non-randomized UMP T: P[¢' € C] =1 —P[Tyy = 1] <1 —P[Tyy = 1] O

UMAU CI: - Level 1 — « conf set C(X) is ©’-unbiased iff P[0'] <1 — «, V0’ € ©’.

- Let C(X) be a ©-unbiased conf set with conf coef 1 — « if for any other level 1 —«,
©'-unbiased set C1(X), V0’ € ©' P[0’ € C(X)] < P[0’ € C1(X)], it is © —UMAU
- O(X) is UMAU iff ©' = {6}°

Thm UMAU CIL: C(X) be conf set for § by inverting AR of non-randomized tests Tp,
for Ho : 0 = 6o v.s. H1 : 8 € ©g,. If for each 0o, Ty, is unbiased of size «, C(X) is
©’ —unbiased with conf coef 1 — a where ©' = {6’ : 6 € O,/ }.

If Ty, is also UMPU for each 6y, C(X) is ©' —UMAU.
- Proof is similar to UMA. Unbiased: always smaller prob. to cover false 6’.

Ex: Linear Model: X ~ N(Z8,02%T},,), with 8 = o™ 3, with a € R(Z):

Non-rand. test AR is A(60) = {z : aTB—00 > tn—r,a/aT(ZTZ)~aSSR/(n — 1)}
is size « UMPU for Hq : 6 = 0 v.s. Hy : 6§ < 6g. Inverting it, there is a @' -UMAU
upper bound with conf coef 1 —c, and ©' = {0’ : 0 € Oy} = {0' : 0 < 0’} = (0, 0).
The upper bound is § = a8 — ty_r.a/aT(ZTZ)~a SSR/(n — 1)

O

6 = 0y v.s. some

T(xz) # 1}.

”Inverse”




