
Measure Theory
Measure Space: (Ω,F) : F is a σ−field on Ω s.t. (1) Ω ∈ F , (2) ∀A ∈ F ⇒ Ac ∈ F ,
(3) A1, A2, · · · ∈ F ⇒

∪∞
i=1 Ai ∈ F .

Measure: a measure µ on F is a non-negative extended real-valued function on F s.t.
any disjointed sets A1, A2, · · · , µ(∪Ai) =

∑
µ(Ai). µ(Ω) can be ∞. If µ(Ω) = 1,

it’s probability measure and (Ω,F, µ) is probability space.
Lebesgue Measure: Consider Ω = R, A = {(a, b) : −∞ < a < b < +∞} i.e. collection
of open intervals. B = σ(A) is called Borel sets. On B(R), Lebesgue measure is the
length of the interval, which can be ∞.

Counting Measure: Let Ω be a countable set, F = 2Ω, and for A ∈ F , µ(A) = |A|.
Measure Function: s.t. g(x) = limSn(x), where (1)Sn(x) takes finite number of
values {ai}mi=1, (2){x : Sn(x) = ai} ∈ F , (3)Sn(x) is non-decreasing w.r.t n.

Integration:
∫
gdµ = limn

∑n
i=1 aiµ({Sn(x) = ai}).

Dominated: If µ(A) = 0 ⇒ ν(A), ∀A, we say ν ≪ µ.
Derivative: ν ≪ µ ⇒ ∃f s.t. ν(A) =

∫
A
fdµ. f is the derivative.

Probability Measure: Space (Ω,F, P), if P(Ω) = 1, P is a probability measure.
·If ∃µ s.t. P ≪ µ, then ∃p s.t. P(A) =

∫
A
p dµ, p is the density of P w.r.t. µ.

·A set of prob. measures P on (Ω,F). If ∀P ∈ P, P ≪ µ, → a family of p.
Random Variable: A measure function X : (Ω,F) → (E,G). E: sample space.
Support: Supp(P) = {x : P[a, b] > 0, a < x < b}. If ∃p, it’s {x : p(x) > 0}
Convex
Set: A is a convex set if ∀x, y ∈ A, 0 < t < 1 ⇒ tx+ (1 − t)y ∈ A.
Function: Real valued function ϕ(x) defined over open interval (a, b) is convex if
·∀a < x, y < b, ϕ[rx+ (1 − r)y] ≤ rϕ(x) + (1 − r)ϕ(y), 0 < r < 1
·If ϕ is differentiable: ϕ′(x) ≤ ϕ′(y), ∀a < x < y < b
·If ϕ is twice differentiable: ϕ′′(x) ≥ 0, ∀a < x < b

Model
Exponential Family: A parametric family {Pθ : θ ∈ Θ} is said to be
s−dimensional a Exp family if the distributions Pθ have densities of form: pθ(x) =
exp{

∑s
i=1 ηi(θ)Ti(x) − A(θ)}h(x), where A(θ) is to normalize the density as

A(θ) = log{
∫
h(x)exp[

∑s
i=1 ηi(θ)Ti(x)]}.

Ex: N(µ, σ2): p(x) = exp{ µ

σ2
x− 1

2σ2
x2 − µ2

2σ2
− log(

√
2πσ)}.

If µ = 1 is known, ηTT cannot reduce to 1 term, but the dim of η is 1.
Natural Exponential Family: Reparameterize by η = η(θ), and there is the canonical
form: pη(x) = exp{ηTT (x)−B(η)}h(x). Where η is the nature parameter, and the
nature parameter space is Ξ = {η :

∫
pη dµ < ∞}

· Canonical form is not unique, as we can use (cη, T/c) instead.
· Dim of θ and η can be different: η1 = η2 = θ

2 , d(θ) = 1, d(η) = 2, d(Ξ) = 1
If η ∈ Rs and d(Ξ) = s i.e. Ξ contains a s−dim. open set, we say it’s full rank.

Properties:
If X1, · · · , Xn indep. exp. family r.v.s, the joint density is still exp. family.
Decompose: T = (T1, · · · , Ts) =: (Y, U), then Y, Y |U = u are still exp. family.
Any integrable function f and interior point η0 ∈ Ξ, Eηf(X) =

∫
f(x)pη dµ is in-

finitely differentiable w.r.t η in a neighborhood of η0. The diff. can interchange
with int. Ex: take f = 1, ∂

∂ηi
Eη[1] = 0 = Eη{Ti − ∂

∂ηi
A(η)} ⇒ EηTi − ∂

∂ηi
A(η).

Similarly: ∂2

∂ηi∂ηj
Eη [1] = 0 ⇒ Cov(Ti, Tj) = ∂2

∂ηi∂ηj
A(η)

MGF: Let u = (u1, · · · , us), MT (u) = Eeu1T1+···+usTs = eA(η+u)−A(η). We need
η + u ∈ Ξ, and ETni = ∂n

∂un
i
My(u)|u=0.

Cumulate generating function: K(u) = logM(u) = A(η + u) − A(η)

Prove NOT Exp family: Take 1
2 e

−|x−µ| as an example:
Assume it belongs to some exp family, and the jointed PDF of size n > s is:
f(x;µ) = 2−nexp{−

∑
|xi − µ|} = exp{

∑s
j=1[ηj(µ)

∑n
i=1 Tj(xi)] − nA(µ)}

Remove h(x) by log[f(x;µ)/f(x; 0)] =
∑

|xi| −
∑

|xi − µ| = · · · *
Note ψ(x, µ) =

∑
|xi| −

∑
|xi − µ|, η̃j(µ) = ηj(µ) − ηj(0), Ã(µ) = A(µ) −

A(0), T̃j(x) =
∑n
i=1 Tj(xi) Above * is ψ(x, µ) =

∑s
j=1 η̃j(µ)T̃j(x) − nÃ(µ).

·If the Exp assumption is correct: if ∃x, y s.t. T̃ (x) = T̃ (y)⇒ ∀µ same R.H.S⇒
ψ(x, µ) = ψ(y, µ), ∀µ. As a function of µ, ψ(x, µ) is not differentiable at xi. Hence,
T̃ (X) = T̃ (Y ) ⇒ (X(1), · · · , X(n)) = (Y(1), · · · , Y(n)).
·However, we can find liner independent η̃(µ1), · · · , η̃(µs) by choosing µ. There is
a full rank linear system. So ψ(x, µj) = ψ(y, µj), ∀j ⇒ T̃ (X) = T̃ (Y )
If we choose min{xi} > max{µj} min{yi} > max{µj}, they can have same ψ. If
the assumption is correct ⇒ same T̃ ⇒ same order statistics, which is not necessary.

Sufficient: X ∼ P ∈ P, T (X) is suff. for P if the distribution of X|T doesn’t depend
on P . (parametric: not on θ). The family P or Θ need to be given.

Factorization Thm: X ∼ P ∈ P, and P ≪ µ. Then T is suff. iff the density can be
written as d

dµP (x) = gp(T (x))h(x), i.e. f(x) = g(T, θ)h(x).
Not Unique: T is suff. and ∃h(U) = T , U is also suff.
Exp Family: T is always suff. by the Factorization Thm.

Minimal Sufficient Statistic: T is MSS iff for any other suff. statistic S exists a mea-
surable function ϕ s.t. T = ϕ(S). (Function is always from more to less).

Unique: T1, T2 are MSS, by Def there is a 1 − 1 mapping between them.
Existence: Usually exists, but exceptions are possible.

Check MSS: (1)Suppose P0 ⊂ P with a.s.P0 ⇒ a.s.P. If T is suff. for P and MSS
for P0, T is MSS for P.
(2)Suppose P contains PDF’s f0, f1, · · · , w.r.t σ−finite measure µ. Let f∞ =∑∞
i=1 cifi where ci > 0,

∑
ci = 1 and Ti(X) = fi(X)/f∞(X) where f∞(X) > 0.

Then T = (T0, T1, · · · ) is MSS. If ∀i ≥ 1 : {x : fi(x) > 0} ⊂ {x : f0(x) > 0}, use
f0 instead of f∞. T = (T1, T2, · · · ) is MSS.
Remark: f∞ cover the union of the supports, with

∫
f∞ dµ = 1

P only contains countable fi. ⇒ Choose countable from P, then ues (1).
(3)Suppose P contains PDF’s fp w.r.t µ and T is suff. s.t. for any possible x, y
fp(x) = fp(y)ψ(x, y) for all P ⇒ T (x) = T (y). Then T is MSS. i.e. fp(x)/fp(y)
doesn’t depends on p ⇔ T (x) = T (y).

Exp. family: If ∃ηo, · · · , ηs ∈ Ξ, s.t.η1−η0, · · · , ηs−η0 linear indep. T (x)−T (y) = 0

is the only root of ηT (T (x) − T (y)) = 0 ⇒ T is MSS.
Such η exist if it is full rank.

Ancillary: V (X) is ancillary if it’s distribution doesn’t depends on P.
Complete: T (X) is complete iff any measurable function f :
EP [f(T )] = 0∀P ∈ P ⇒ f = 0 a.s.P
·If T is complete, S = ψ(T ) is also complete.
·If T is complete and sufficient, T is MSS: If ∃t is MSS, t = g(T ) by definition.
Let h(t) = EP (T |t) → EP [h(t) − T ] = 0, ∀P ∈ P. As comp. T = h(t) a.s.P.
Hence there is 1 − 1 mapping between T, t, T is also MSS.

·Full Rank Exp. family: T is suff. & comp. ⇒ MSS: Proof:
T is suff. by Factorization Thm. Let pη(t) = h(x)eη

T t−A(η)

Suppose f s.t. Eη [f(T )] =
∫
f(t)pη(t) dλ = 0, for all η ∈ Ξ.

Let η0 be a interior point of Ξ, and there is a neighborhood Nϵ(η0) ⊂ Ξ,
with ∀η ∈ Nϵ(η0)s.t.Eηf+(T ) = Eηf−(T ). LetEη0f+(T ) = Eη0f−(T ) = c

If c = 0 trivial, if c > 0: 1
c pη0 (t)f+(t) and 1

c pη0 (t)f−(t) are also PDF.
Let a = η − η0:

∫
eat

pη0
(t)f+(t)

c dλ =
∫ pη(t)f+(t)

c dλ =
∫ pη(t)f−(t)

c dλ =∫
eat

pη0
(t)f−(t)

c dλ. As such a can cover Nϵ(η0), they have same MGF in a neigh-
borhood of 0.⇒ pη0 (t)f+(t) = pη0 (t)f−(t) a.s. ⇒ f− = f+ = 0 a.s.
·If not full rank, but exists linear indep.: Check MSS (3)

Basu’s Thm: If T is comp.& suff. any ancillary V : V ⊥⊥ T Proof:
If V is ancillary, pA = P [V ∈ A] doesn’t depend on P ∈ P. Let ηA(t) = P [V ∈
A|T = t] also indep. of P . As EηA(T ) = pA ⇔ E[ηA(T ) − pA] = 0, ∀P.
As comp. ηA(T ) = P[V ∈ A|T ] = P[V ∈ A] = pA, a.s.P, i.e. V ⊥⊥ T

Estimator
Point estimator: statistic T (X) estimate τ . (Fun. of para., or non-para. dist.)
Bias: ET − τ Unbiased: ET = τ .
Loss function: L(τ, T (X)) : Θ × {T (X), X ∈ Rn} → [0,∞), e.g. (T − τ)2

Risk function: R(τ, T ) = EP [L(τ, T )]P ∈ P. Expectation w.r.t. T and P .
Admissibility: T is inadmissible if ∃ another estimator U s.t. R(τ, T ) ≥ R(τ, U) for
all P ∈ P. And ” > ” for some P . If no such U , T is admissible.

UMVUE: Unbiased T of τ is ... if any other unbiased U :V ar U ≥ V ar T ∀P ∈ P.
Locally MVUE: V arT ≤ V arU at some fixed P ∈ P
·May not exist: Ex: X ∼ Binomial(n, θ) τ = 1

θ If T (X) unbiased: EθT (X) =∑
T (k)(nk )θ

k(1 − θ)n−k = 1
θ When θ → 0 LHS→ T (0) while RHS→ ∞. Hence, no

unbiased estimator of τ.
·Estimable: if ∃ unbiased estimator of τ , it is called estimable.

Jensen’s ineq.: If ϕ(x) is a convex function over open interval I, and P[X ∈ I] = 1.
Then ϕ(EX) ≤ E[ϕ(X)]. If strictly convex, ” < ”, unless P[X = c] = 1.

Rao-Blackwell Thm: Let X ∼ P ∈ P, and S is a suff. stat. Given loss fun. L(τ, a),
convex in a for any P ∈ P. Let T (X) be the estimator of τ with finite risk R(τ, T ),
then U = E[T |S] s.t. R(τ, U) ≤ R(τ, T ). Proof: (Jensen’s)
R(τ, T ) = ES{ET |S [L(τ, T )|S]} ≥ ES [L(τ,E(T |S))] = R(τ, U)
Requirement: Convex loss function: e.g. 0-1 loss is not convex.

Lemman-Scheffe Thm: Suppose S is suff. and comp. for P ∈ P, and τ estimable
·There is a unique unbiased estimator of the form h(S), h is Borel function.
·h(S) is the unique UMVUE for τ . Proof: estimable⇒ ∃T s.t.ET = τ ⇒ h(S) =
E(T |S). Eh(S) = ET = τ ∀P ∈ P Unbiased✓As S comp, if ∃Eg(S) = τ ∀P ∈
P,h(S) = g(S) a.s.P.Uniqueness✓Any unbiased U , h(S) = E[U |S] is same(as
unique). By Rao-B, R(τ, h(S)) ≤ R(τ, U). UMVUE ✓

Find UMVUE: get a suff & comp S first then: ·Find h s.t. Eh(S) = τ ;
·Solve EP (h(S)) = τ ∀P ∈ P directly; ·Find unbiased T , h(S) = E(T |S)

EX1:Xi ∼ N(µ, σ2)µ ∈ R, σ > 0 : T = (X̄, S2) is comp & suff for θ = (µ, σ2), with
X̄ ∼ N(µ, σ

2

n ), (n−1)S2

σ2
∼ χ2

n−1 and X̄ ⊥⊥ (n−1)S2

σ2
. For µ : EX̄ = µ, it’s UMVUE.

For µ2 : E[X̄ − S2

n ] = µ2, it’s unbiased, and function of T hence UMVUE.

σr: Let Y ∼ χ2
n−1, ES

r = E
(
σ2Y
n−1

) r
2 = 2r/2 σr

(n−1)r/2
Γ[(n−1+r)/2]
Γ[(n−1)/2]

When r > 1−n,

E (n−1)r/2Γ[(n−1)/2]

2r/2Γ[(n−1+r)/2]
Sr = Ekn−1,rS

r = σr, it’s unbiased and function of T , hence

UMVUE. Where kn,r = [nr/2Γ(n/2)]/[2r/2Γ((n+ r)/2)].

µ/σ : µ : X̄, σ−1 : kn−1,−1S
−1 as indep, X̄kn−1,−1S

−1 unbiased and fun of T.
τ s.t.P[X1 ≤ τ ] = p : τ = µ+ Ψ−1(p)σ, sub result of µ, σ in.

EX2: Xi ∼ Uni(0, θ): X(n) is comp. & suff. with E(n+1
n X(n)) = θ.

Approach 2: Let Eθh(S) = τ , expand both sides. As a function of θ, The coefficients
should be same. Then we can get function h.

EX3: Xi ∼ Bernoulli(θ), S =
∑
Xi is comp & suff τ = θ(1− θ). Assume Eh(S) = τ

for all θ ∈ (0, 1) ⇒ Eh(S) =
∑
h(k)(nk )θ

k(1− θ)n−k = θ(1− θ). Divide by (1− θ)n

on both sides, and let ρ = θ
1−θ :

∑n
k=0 h(k)(

n
k )ρ

k = ρ(1 + ρ)n−2 =
∑n−1
k=1 (

n−2
k−1 )ρ

k

⇒ h(0) = h(n) = 0, h(k) = (n−2
k−1 )/(

n
k ) =

k(n−k)
n(n−1)

⇒ h(T ) =
T (n−T )
n(n−1)

.
EX4: Power series: P[X = x] = γ(x)θx/c(θ), γ(x) known, θ unknown.
Poisson(θ):γ(x) = 1

x! , c(θ) = eθ, Bino(n, p) : γ(x) = (nk )IN(x), c(θ) = (1 + θ)n

As full rank Exp Family: T =∼ Xi is comp & suff. PMF of T is P[T = t] =
γn(t)θ

t/cn(θ), where γn(t) =
∑
x1+,··· ,+xn=t[γ(x1) · · · γ(xn)] For τ = g(θ):

g(θ) = θr

[c(θ)]p
assume Eh(T ) = τ then

∑∞
t=1 h(t)γn(t)θ

t = [c(θ)]n−pθr =∑∞
t=1 γn−p(t)θ

t+r =
∑∞
t=r γn−p(t− r)θt where the second equality is expectation

of real number w.r.t PMF of n− p. Then h(T ) =
γn−p(T−r)
γn(T )

I(T≥r).
EX 3rd approach: Xi ∼ fθ = θx−2I(x>θ), τ = P[X1 > t], where t > 0 is a constant.
X(1) is comp & suff while T = I(X1>t)

is unbiased. The UMVUE is E[T |X(1)]

i.e. P[X1 > t|X(1) = x(1)] = P[ X1
x(1)

> t
x(1)

|X(1) = x(1)] = P[ X1
x(1)

> t
x(1)

] as
X1
X(1)

is ancillary.Let S = t
x(1)

. When s < 1, as X1
X(1)

≥ 1 a.s., P[·] = 0. When

s ≥ 1P[ X1
X(1)

> s] =
∑n
i=1 P[ X1

X(1)
> s,X(1) = xi] = (n − 1)P[ X1

X(1)
> s,X(1) =

xn] = (n − 1)P{X1 > sXn, X2 > Xn, · · · , Xn−1 > Xn} = E{P[X1 > sXn, X2 >

Xn, · · · , Xn−1 > Xn]|Xn}. Int. with the pdf given above, it is n−1
nt X(1). Hence,

h(X(1)) = n−1
nt X(1)IX(1)≤t + IX(1)>t

is UMVUE of τ.
Non-parametric: Order statistic T = (X(1), · · · , X(n)) is comp & suff. Function
ψ(X1, · · · , Xn) is a function of T iff ψ is symmetric. Hence, unbiased U-statistic is
UMVUE. e.g. X̄ : EX1; S2 = 1

n

∑
(Xi − X̄)2 : V arX1;Fn(t) =

∑
IXi≤t : F (t).

Stein’s Shrinkage: Xi ∼ N(θ, Ik), where θ is an unknown k×1 vector. We know X̄ is
UMVUE for θ. It is proved X̄ is inadmissible when k ≥ 3. Assume θ̂ = X̄ + 1

n g(X̄)

with g to be determined s.t. E[||X̄ − θ||2] − E[||θ̂ − θ||2] > 0, for θ ∈ Θ. Rewrite
as: E[||X̄ − θ||2] − E[||X̄ − θ + 1

n g(X̄)||2] = − 1
n2 E||g(X̄)||2 − 2

nE{gT (X̄)(X̄ − θ)} =

− 1
n2 E||g(X̄)||2 − 2

n

∑k
j=1 E{gj(X̄)(X̄j − θj)}. Note Y = X̄, with pdf f(y; θ), then

(Yj−θj) = − 1
n

∂
∂Yj

log f(Y, θ). Then integral by parts, there is E{gj(X̄)(X̄j−θj)} =

1
nE[ ∂

∂Yj
gj(Y )]. Question reduce to E||g(X̄)||2 + 2

∑k
j=1 E[ ∂

∂X̄j
gj(X̄)] < 0.

Consider ψ : Rk → R s.t. gi(x) = ∂
∂xi

logψ(x) = 1
ψ(X)

∂
∂xi

ψ(x). If
∑k
i=1

∂2

∂x2
i

ψ(x) =

0, we can check the inequality holds, and such ψ is called harmonic function.
e.g. ψ(x) = ||x||−(k−2), k > 3, g(x) = − k−2

||x||2
x, MSE(θ̂) < MSE(X̄).

·James-Stein Estimator: Biased but better than all of the unbiased ones.
Information Inequality
Interested in Squared Error Loss. T (X) estimate τ(P ), which is fun. of P ∈ P

Fisher Information Preparation: 1. Parametric family with PDF p(x; θ) ∈ Pθ, and
dominated by measure µ; 2. Support doesn’t depend on θ, denoted as A; 3.
∂
∂θ p(x; θ) exists for all x ∈ A, θ ∈ Θ. 4. If T is any statistic with finite mean for
all θ ∈ Θ, then the order of can be changed: ∂

∂θ

∫
Tp(x; θ)dx =

∫
T ∂
∂θ p(x; θ)dx.

Remark: all Exp family ✓, but Uni(0, θ) & 1
b e

−(x−a)/bI(x>a) ×.
Fisher Information: Let X be a single sample from P ∈ Pθ, where parameter space Θ
is an open set in R. Suppose conditions above hold, the Fisher Information number
is defined as: I(θ) = E{ ∂

∂θ log p(X; θ)}2 =
∫
( ∂∂θ log p(x; θ))

2p(x; θ)dx

Multi-parameter: Fisher Information Matrix I(θ) = E{ ∂
∂θ log fθ(X)[ ∂∂θ log fθ(X)]T }

Remarks:·Fisher Information doesn’t depend on estimator, but on parameterization.
·Let θ = ψ(η), FI of θ is I(θ), for η : Iη(η) = [ψ′(η)]2I(ψ(η))

·Θ is open set: to make ∂
∂θ p(x; θ) always exists. In Exp fam. full rank is needed.

·Interpret: Larger I(θ) ⇒ more Information about θ ⇒ better estimated.
Properties:·If X ⊥⊥ Y , IX,Y (θ) = IX(θ) + IY (θ). can be diff. dist. share same θ;

·In particular: X1, · · · , Xn i.i.d In(θ) = nI1(θ);

·Suppose p(x; θ) twice differentiable in θ, and ∂
∂θ

∫ ∂p(x;θ)

∂θT
dx =

∫ ∂2p(x;θ)

∂θ∂θT
dx, θ ∈

Θ, then I(θ) = −E{ ∂2

∂θ∂θT
log p(x; θ)}. Exp family satisfy this one.

Cramer-Rao Lower Bound: T (X) is an estimator with ET = g(θ) being a differentiable
function of θ. Suppose Pθ has pdf p(x; θ) w.r.t. a measure µ for all θ ∈ Θ, and p(x; θ)
is differentiable in θ, and s.t. ∂

∂θ

∫
h(x)p(x; θ)dµ =

∫
h(x) ∂∂θ p(x; θ)dµ, θ ∈ Θ, for

h = 1 and h(X) = T (X). Then V ar T ≥ [ ∂∂θ g(θ)]
T [In(θ)][

∂
∂θ g(θ)].

Remark: If T is unbiased and V ar T = CRLB, it is UMVUE.
Proof of k = 1: use V ar T·V ar[ ∂∂θ log p(X; θ)] ≥ Cov(T, ∂∂θ log p(X; θ)), it can be

1



proved that Cov = g′(θ) and V ar = In(θ) as E ∂
∂θ log p(X; θ) = 0;

Proof of multi: RHS= max
c

(cT ∂
∂θ
g(θ))2

cT In(θ)c
. Similar with k = 1, use cT ∂

∂θ g(θ) instead.
·CRLB is not affected by 1-1 Reparameterize. Similar to that in Fisher Information.

MLE
Definition: Let X = (X1:n) be a sample with joint PDF f(x; θ) w.r.t measure µ when
θ ∈ Θ ⊂ Rk. For each outcome x, f(x; θ) is a function of θ called Likelihood: L(θ)
Let Θ̄ be the closure of Θ, A θ̂ ∈ Θ̄ s.t. L(θ̂) = maxθ∈ΘL(θ) is called a ML estimate
of θ. If θ̂ is a Borel function, it’s MLE of θ .
Let g(·) be a Borel function from θ → Rp, p ≤ k, if g is not 1-1, ν̂ = g(θ̂) is defined
to be MLE of ν = g(θ). If it is 1-1, by invariant of MLE, it’s MLE of ν.

Computation:·If Θ is finite: Compare directly;
·Generally: Get L(θ) → l(θ), first derivative = 0, second < 0. Or Check by def.

Ex: X1:n = x1:n observed, with Xi ∼ Bernoulli(p) L(p) = pnx̄(1 − p)n(1−x̄).
Θ = (0, 1), Θ̄ = [0, 1]. If 0 < x̄ < 1, x̄ is the unique root with second < 0, and
l(p) → 0 when p → 0 or 1. If x̄ = 0 l(p) = (1 − p)n ↘, p̂ = 0 = x̄. If x̄ = 1
l(p) = pn ↗, p̂ = 1 = x̄. Hence, X̄ is the unique MLE on Θ̄.

MLE in Exp. fam.: l(η) ∝ ηTT−A(η), likelihood equation: ∂
∂η l(η) = T− ∂

∂ηA(η) = 0

and ∂2

∂η∂ηT
l(η) = − ∂2

∂η∂ηT
A(η) = −V ar(T ) ≤ 0. If T (X) in the range of ∂

∂ηA(η),

T is unique MLE of µ(η) = ∂
∂ηA(η). As each component of µ(η) is monotone

decreasing, ∃µ−1 s.t. η = µ−1( ∂∂ηA(η)), and hence η̂ = µ−1(T ) is the MLE of η.
Asymptotic Properties:
Conditions: 1. f(x; θ) are distinct; 2.they have common support; 3.Observations
X = (X1:n) are iid with density f(xi; θ) w.r.t µ; 4.Space Θ contains an open set,
where true θ0 is interior point.

Reasonability: With 1-3: For any fixed θ ̸= θ0 Pθ0 [L(θ0|X) > L(θ|X)] → 1, n → ∞
Consistency: With 1-4: Suppose for almost all x, f(x; θ) is differentiable in the open
set Θ, then, with probability 1 there is at least 1 seq. of θ̂n s.t. ∀ϵ > 0, P[|θ̂n−θ0| >
ϵ] → 0 ⇔ θ̂n →P θ0.

Efficiency: With 1-4, assuming Fisher Information exists and finite, together with:
· ∂3

∂θ3
f(x; θ) exists and continuous in θ;

·
∫
f(x; θ)dµ can be 3 times differentiated under integral sign;

·For all θ0 ∈ Θ there exists positive number c and M(X) with Eθ[Mijk(x)] <

∞, s.t. || ∂
3log f(x;θ)
∂θi∂θj∂θk

|| ≤ Mijk(x), for all ||θ − θ0|| < c.

Then, any consistent seq. θ̂ :
√
n(θ̂n − θ0) →L N(0, [I(θ)]−1).

Achieves the CRLB for unbiased estimators when n → ∞.
If the root of likelihood equation is unique, it’s consistent, asymptotically efficient
whether or not it’s MLE.

Linear Model
Model Setting: Observations: (X1, Z1), · · · (Xn, Zn), Zi : p× 1, Xi : 1 × 1;

Model: Xi = ZTi β + ϵi, i = 1 : n. βp×1 : unknown parameter, ϵi : random error;
Matrix Form: Xn×1 = Zn×pβ + ϵn×1, Z : design matrix (no T here).

Estimation: LSE: If β̂ s.t. ||X − Zβ̂|| = minb ||X − Zb̂|| it is LSE.
For any p vector a, aT β̂ is LSE of aT β.

Solution: ||X − Zb̂||2 = ZTX + bTZTZb− 2XTZb, ∂
∂b · · · = 0 ⇒ ZTZb = ZTX

As it is convex in b, any b s.t. ZTZb = ZTX is an LSE of β. If full rank, r(Z) = p

and β̂ = (ZTZ)−1ZTX, if not β̂ = (ZTZ)−ZTX.

Non-Full Rank case: ∃β1 ̸= β2, s.t. Zβ1 = Zβ2, the model is nor identifiable.
Reparameterize: If Zn×p is of rank r, ∃Qr×p s.t. Z = Z∗Q, where r(Z∗) = r, and
the model can be written as X = Zβ + ϵ = Z∗Qβ + ϵ = Z∗β̃ + ϵ.
To estimate νaT β, only when a = QT c for some c it is meaningful, i.e.aT β = cT β̃.

Assumptions: A1: ϵ ∼ N(0, σ2In), with unknown σ2 > 0
A2: Eϵ = 0, V ar ϵ = σ2In, with unknown σ2 > 0
A1: Eϵ = 0, V ar ϵ unknown. (Actually A1 ⇒ A2 ⇒ A3)

Properties: Assume a linear model with A3:
1. a = QT c for some c ∈ Rr ⇔ a ∈ R(Z) = R(ZTZ), row space of Z;
2. If a ∈ R(Z), the LSE aT β̂ is unique and unbiased for aT β
Proof: a ∈ R(Z) ⇒ ∃b s.t. a = ZTZb ⇒ aT β̂ = bTZTZ(ZTZ)−ZTX, EaT β̂ =

bTZTZβ = aT β. Unbiased✓. If β̄ is also LSE ZTZβ̄ = ZTX ⇒ aT β̂ − aT β̄ =

bTZTZ(β̂ − β̄) = bT (ZTX − ZTX) = 0.

3. If a /∈ R(Z), and A1 holds, then aT β is not estimable.
Proof: Assume ∃h(X,Z) s.t.Eh(X,Z) = aT β, then a = ∂

∂β a
T β = ∂

∂β Eh(X,Z) =
∂
∂β

∫
· · · dx = ZT c. Contradictory.

Ex: One Way ANOVA: n =
∑
nj , with integers n1, · · · , nm > 0, Xij = µi + ϵij .

ϵij are iid random error with Eϵ = 0, V ar ϵ = σ2. Let Jk be the k × 1 vector of
ones, Xi = (Xi1, · · · , Xini )

T , and X = (X1, · · · , Xm)T , Z = diag(Jn1
, · · · , Jnm ),

ϵ is similar to X, and β = (µ1, · · · , µm)T . Then ZTZ = diag(n1, · · · , nm),
(ZTZ)−1 = diag(n−1

1 , · · · , n−1
m ) β̂ = (X̄1·, · · · , X̄m·).

Linear Estimator: a linear function of X i.e. cTX for some fixed c.
·aT β̂ is linear estimator with c = Z(ZTZ)−a ·V ar(cTX) = cTV ar(ϵ)c

·If a ∈ R(Z) and V arϵ = σ2In, V arβ̂ = σ2aT (ZTZ)−a.
Properties With A2:·∃ linear unbiased estimator of aT β iff a ∈ R(Z).
·Gauss-Markov Thm: If a ∈ R(Z), then the LSE aT β̂ is best linear unbiased esti-
mator (BLUE) of aT β. As V ar aT β̂ is min. among all the unbiased linear estimator.
Proof: 1. Assume ∃c ∈ Rp s.t. aT β = EcTX = cTZβ, ∀β ∈ Rp ⇒ a = ZT c.
2. As a ∈ R(Z), ∃b s.t. aT β̂ = bT (ZTZ)β̂ = bTZTX by def of LSE, and hence

V ar cTX = V ar(cTX + aT β̂ − aT β̂) = V ar(cTX − bTZTX) + V ar(aT β̂) +

2Cov(cTX − bTZTX, aT β̂) ≥ V ar(aT β̂) + 2σ2{cTZb − bTZTZb} as shown above
a = ZT c, cTZb− bTZTZb = aT b− aT b = 0.

Properties with A1: ·LSE aT β̂ is UMVUE for all estimable atβ
·UMVUE for σ2 is σ̂2 = (n− r)−1||X − Zβ̂||2, r is rank of Z.
·Fir estimable aT β : aT β̂ ∼ N(aT β, σ2aT (ZTZ)−Z), (n− r)σ̂2/σ2 ∼ χ2

n−r.

Proof: 1. As it is LSE ZTZβ̂ = ZTX ⇒ ||X−Zβ||2 = ||X−Zβ̂||2 + ||Zβ̂−Zβ||2 =

||X − Zβ̂||2 − 2βTZTX + ||Zβ||2 + ||Zβ̂||2, the pdf is exp{ 1
σ2
βTZT x − 1

2σ2
[||X −

Zβ̂||2 + ||Zβ̂||2]+ · · · }. (ZTX, ||X−Zβ̂||2) is comp and suff for (β, σ2). If estimable,
aβ̂ is unbiased function of T ⇒ UMVUE.
2. E||X − Zβ̂||2 = tr{V arX − V arZβ̂} = σ2{n − tr[Z(ZTZ)−ZT ]} = σ2{n −

tr[(ZTZ)−ZTZ]} = σ(n− r), hence unbiased function of T .
3. As it is linear function of normal, it still normal distribution.

Consistency of LSE: Model X = Zβ + ϵ with A3, consider LSE aT β̂ with a ∈ R(Z).
Let λ+[A] be the largest eigenvalue of A Suppose supn λ+[V arϵ] < ∞ and
limn λ+[(ZTZ)−] = 0, then aT β̂ →L2

aT β. i.e. E||aT β̂−aT β||2 → 0, aT β̂ →P aT β.

Proof: a ∈ R(Z) ⇒ E[aT β̂] = aT β, only need to check V ar aT β̂ =

aT (ZTZ)−ZT [V ar ϵ]Z(ZTZ)−a which is less or equal λ+[V arϵ]aT (ZTZ)−a ≤
λ+[V arϵ]λ+[(ZTZ)−]||a||2 → 0.

Asymptotic Normality: Model X = Zβ + ϵ with A3 Suppose infn λ−[V arϵ] > 0

and limnmax1≤i≤n Z
T
i (ZTZ)−Zi = 0. Suppose further n =

∑
mj with all of mj

bounded by some m. Random error ϵ = (ξ1, · · · , ξk), ξj ∈ Rmj and ξ′s are inde-
pendent.
· If supi E|ϵi|2+δ < ∞ for any a ∈ R(Z), aT (β̂−β)√

V ar(aT β̂)
→d N(0, 1)

· It still holds if m1 = · · · = mk, ξ′s have same distribution.
Lemma: following is sufficient to limnmax1≤i≤n Z

T
i (ZTZ)−Zi = 0:

a). λ+ [(ZTZ)−] → 0 and ZTn (ZTZ)−Zn → 0 as n → 0

b). ∃ ↗ seq {an} s.t. an
an+1

→ 1, and ZTZ
an

converge to a positive defined matrix.

Ex1: Xi = β0 + β1ti + ϵi i = 1 : n. If
∑
t2i
n → c,

∑
ti
n → d, c > d2. b) in Lemma ✓.

Ex2: One-Way ANOVA: max1≤i≤n Z
T
i (ZTZ)−Zi = λ+[(ZTZ)−] = max 1

nj
. If

min nj → ∞, Asymptotic Normality✓.
Decision Theory
X: a sample from population P ∈ P X : the range of X
A: the range of allowable actions (A,FA): the action space
Decision Rule: A measurable function T : (X ,FX ) → (A,FA)
Ex: ·Point Estimation: A is the parameter space Θ
·Hypothesis testing: A is reject or accept H0

Loss function: Evaluate action a: L(P, a) : P × A → [0,+∞).
Risk function: Evaluate rule T(X): RT (P ) = EP [L(P, T (X))] =

∫
L(P, T (x))dPX

If P is parametric, θ is used instead.
Comparison of Two Decision Rules: T1 is ·· T2 if:
·as good as: RT1 (P ) ≤ RT2 (P ), ∀P ∈ P;
·better than: T1 is as good as T2, and RT1 (P ) < RT2 (P ) for some P ∈ P;
·Equivalent: RT1 (P ) = RT2 (P ), ∀P ∈ P;
·Optimal: T∗ ∈ T is T −optimal if T∗ is as good as any other T ∈ T ;
·Admissible: If no U ∈ T is better than T ∈ T , T is T −admissible.
·If there are two T −admissible and not equivalent rules ⇒ no optimal.
e.g. Very small risk at some P , no better rules, but not as good as others.

Randomized Decision Rule: δ is a function on X × FA, s.t. ∀x ∈ X , δ(x,·) is a
measure on (A,FA). i.e. If X = x is observed, we have a distribution of actions.
·Non-Randomized Rules can be regarded as δ(x, {a}) = I{a}(T (X))
·To show δ is randomized rule, we need to show δ(x,·) is a prob. measure.
Loss function: L(P, δ, x) =

∫
A L(P, a)dδ(x, a).

Risk function: Rδ(P ) = EP [L(P, δ,X)] =
∫
c
X

∫
A L(P, a)dδ(x, a)dPX

Randomized Rule with Discrete Dist.: δ(x, ·) assign pj(x) to non-randomized Tj(x)
Ex: Non-rand. T1(X) = X̄, under SEL: L1 = (X̄ − θ)2, R1 = (µ− θ)2 + σ2

n

Non-rand. T2(X) = c, under Squared Error Loss: L2 = (c− θ)2, R2 = (c− θ)2

Randomized: T = T1 with p, T = T2 with 1 − p. L = pL1 + (1 − p)L2, R = · · ·
Ex: Hypothesis Testing: P0 ⊂ P, P1 = Pc0 : H0 : P ∈ P0 v.s. H1 : P ∈ P1.
With 0-1 Loss, and A = {0, 1}, T : X → A. Loss L = 0 if correct L = 1 if not.
Risk RT (P ) = P[T = 1]IP∈P0

+ P[T = 0]IP∈P1
Thm: Randomized & Non-Randomized: Suppose that A is convex and L(P, a)
is a convex function of a for any P ∈ P. Let δ be a randomized rule s.t.∫
A ||a||dδ < ∞ for ∀x ∈ X . Let T (X) =

∫
A adδ(x, a), then L(P, T ) ≤ L(P, δ, x) for

any x ∈ X , P ∈ P. Proof based on Jensen’s inequality.
Squared Error Loss, Absolute Loss, etc are convex; 0-1 Loss is not convex.
Interpret: Non-randomized T get from δ will be better.

Bayes Risk: Average of risk function RT (P ) over P: rT (Π) =
∫
P RT (P )dΠ. Where

Π is a known prob. measure on (P,FP). rT (Π) is the Bayes risk of T w.r.t. Π. If
T∗ ∈ T s.t. rT∗ (Π) ≤ rT (Π), ∀T ∈ T . T∗ is called a T −Bayes rule w.r.t Π.

Minimax Rule: If T∗ ∈ T and supP∈P RT∗ (P ) ≤ supP∈P RT (P ), ∀T ∈ T . T∗ is
called T −minimax rule.

Recall Bayes Analysis:
X is from a population in a parametric family P = {pθ : θ ∈ Θ}, where Θ ⊂ Rk for
some fixed k ∈ N+. Real valued θ is a realization of r.v. θ̃ ∼ π, π is the prior dist.
Sample X ∈ X from Pθ = PX|θ, it is conditional dist. of X|θ̃ = θ.
Posterior: dist. of θ̃ conditional on X = x: π(θ|x) =

∫
f(x1:n|θ)π(θ)dx1:n

Marginal: dist. of X = x: m(x) =
∫
f(x1:n|θ)π(θ)dθ

Bayes Formula: Assume P = {Pθ : θ ∈ Θ} is dominated by measure ν, and
fθ(x) =

dPθ
dν is a Borel function on (X ×Θ, σ(BX ×Bθ)). Let Π be a prior dist. on

Θ. Suppose that m(x) =
∫
Θ
fθ(x)dΠ > 0, Π is another measure on X . Then the

Posterior dist Pθ|x ≪ Π and
dPθ|x
dΠ =

fθ(x)

m(x)
. Further, if Π ≪ λ for a measure λ and

dΠ
dλ = π(θ), then

dPθ|x
dλ = fθ(x)π(θ)/m(x).

Bayes Action: Let A be an action space in a decision space, and L(θ, a) > 0 be
a loss function. For any x ∈ X , a Bayes action w.r.t. Π is any δ(x) ∈ A s.t.
E[L(θ̃, δ(x)|X = x)] = mina∈A E[L(θ̃, a|X = x)], the E[·] is w.r.t posterior Pθ|x.
Remarks:· For each x ∈ X δ(x) minimize posterior expected loss, and hence we can
get a mapping X → A;
· If the mapping is a measurable function, it is a Bayes Rule;
· Bayes action depends on prior and loss function.

Properties: Assume conditions in Bayes Formula Thm satisfied, and loss function
L(θ, a) is convex in a for any fixed θ. And for each x ∈ X , E[L(θ̃, a|X = x)] < ∞
for some a
1) If A ⊂ Rp is compact, a Bayes action exists for each x ∈ X ;
2) If A ⊂ Rp and L(θ, a) goes to ∞ as ||a|| → ∞ uniformly in θ ∈ Θ0 ⊂ Θ with
Π(Θ0) > 0, a Bayes action exists for each x ∈ X ;
3) If L(θ, a) is strictly convex for each fixed θ in a in 2), 3), the result will be unique.

Ex1: Xi ∼ N(µ, σ2), µ ∼ N(a, b), σ2 is known under Squared Error Loss:
π(µ|x) = f(x1:n|µ)π(µ)/m(x) ∝ f(x1:n|µ)π(µ) ∝ exp{−nb+σ2

2bσ2
[µ2−2

b
∑
x+aσ2

nb+σ2
µ]}

µ|x ∼ N(
b
∑
x+aσ2

nb+σ2
, bσ2

nb+σ2
), E[L|X = x] = E[(µ−δ)2|x] = (δ− b

∑
x+aσ2

nb+σ2
)2+ bσ2

nb+σ2

⇒ Under SEL: δ(x) = E[µ|X = x] =
b
∑
x+aσ2

nb+σ2

Ex2: Same setting with Ex1, but for g(µ), e.g. g(µ) = µ2: δ = E[g(µ)|X = x].
Ex3: Xi ∼ Poisson(λ), λ ∼ Gamma(a, b) find Bayes estimator of λj :
f(x1:n|λ) ∝ λ

∑
xe−nλ, π(λ) = ba

Γ(a)
λa−1e−bλ, π(λ|x) ∝ λ

∑
x+a−1e−(b+n)λ

λ|x ∼ Gamma(
∑
x+ a, b+ n) =: Gamma(a′, b′), the Bayes rule under SEL is:

E[λj |X = x] =
∫ ∞
0

b′a
′

Γ(a′)λ
a′+j−1e−b

′λdλ = b′a
′

Γ(a′)
Γ(a′+j)
b′j+a′

.
Ex4: Bayes Classifier: label yi = 1, · · · , k, Xi|yi = k ∼ pk(xi). Assume labels have
prior π and under 0-1 loss the ŷ = argmaxy p(y)

∏
p(xi|y).

Conjugate Prior: If a prior is in the same parametric family as the posterior, it’s ..
Exp. Family: f(x; η) = h(x)exp{ηTT (x) − A(η)} always have a conjugate prior in
the form of π(η; ξ, ν) = g(ξ, ν)exp{ηT ξ − νA(η)}, where ν is a scalar and ξ is a
vector in the same length of η.

Admissibility: In a decision problem, let δ(X) be a Bayes rule w.r.t. a prior Π.
(i) If δ(X) is a unique Bayes rule, then δ(X) is admissible.
(ii) If Θ is a countable set, the Bayes risk rδ(Π) < ∞, and Π gives positive proba-
bility to each θ ∈ Θ, then δ(X) is admissible.
(iii) Let T be the class of decision rules with continuous risk fun. If δ(X) ∈ T
, rδ(Π) < ∞, and Π gives positive prob. to any open subset of Θ, then δ(X) is
T -admissible.
Remark: If T is better⇒ T has same posterior risk as δ(X) ⇒ T is also Bayes rule.
Problem: strictly better on Θ0, where Π(Θ0) = 0. No such Θ0 in i) ii) iii).

Bias: If δ(X) is Bayes estimator of τ(θ) under SEL, w.r.t. Π. If δ(X) is unbi-
ased, Bayes risk rδ(Π) = 0. Proof: under SEL δ(X) = Eθ[τ(θ)|X]. If unbiased
EX [δ(X)|θ] = τ(θ). Hence E[δ(X)τ(θ)] = Eθ{EX [δ(X)τ(θ)|θ]} = Eθ[τ2(θ)], Sim-
ilarly E[δ(X)τ(θ)] = EX{Eθ[δ(X)τ(θ)|X]} = EX [δ2(X)]. And the Bayes risk is
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rδ = Eθ{EX [(δ(X) − τ(θ))2|θ]} = Eδ2(X) + Eτ2(θ) − 2E[δ(X)τ(θ)] = 0.
Remark: Usually biased, comes from prior. But usually vanish when n → ∞.

Generalized Bayes Action: The minimization in the def. of Bayes action is same as:∫
Θ
L(θ, δ(x))fθ(x)dΠ = mina

∫
Θ
L(θ, a)fθ(x)dΠ. This def. also works when Π is

not a prob, measure on Θ, in with case m(x) may not finite, and we can not get
π(θ|x). δ solved from above is called Generalized Bayes Action.
·Improper prior: Π(Θ) ̸= 1 ·Proper prior: Π(Θ) = 1

Ex: Xi ∼ N(µ, σ2), µ ∈ Θ ⊂ R unknown, σ2 > 0 known, under SEL:
No Information: If Θ = [a, b] we can set Π = Uni(a, b). But if Θ = R, let π(θ) = 1

for all θ, it is improper. Minimize
∫
R(µ−a)

2(2πσ2)−n/2exp{−
∑

(xi−µ)
2

2σ2
}dµ is same

with minimize:
∫
R(µ − a)2exp{− 1

2σ2
[
∑

(xi − x̄)2 + n(x̄ − µ)2]}dµ Let ∂
∂a [·] = 0,

the Bayes rule is δ(x) =
∫
R µexp{−n(x̄−µ)2/(2σ2)}dµ∫
R exp{−n(x̄−µ)2/(2σ2)}dµ

= x̄. If Π = N(a, b), it is
σ2

nb+σ2
a+ nb

nb+σ2
x̄, converge to x̄ when b → ∞.

Admissibility of Generalized Bayes Rules: Suppose that Θ is an open set of Rk. Let
T be the class of decision rules having continuous risk functions. A decision rule
T ∈ T is T -admissible if there exists a sequence {Πj} of (possibly improper) priors,
which give positive measures to any open set, such that
(a) the generalized Bayes risks rT (Πj) are finite for all j;

(b) for any θ0 ∈ Θ and η > 0 lim
j

rT (Πj)−r
∗
j (Πj)

Πj(Oθ0,η
)

= 0, where r∗j (Πj) = infT rT (Πj),

and Oθ0,η = {θ ∈ Θ : ||θ − θ0|| < η} with Πj(Oθ0,η ) < ∞ for all j.
Proof: Suppose T is not T −admissible. Then there exists T0 ∈ T s.t. RT0 (θ) ≤
RT (θ) for all θ and RT0 (θ0) < RT (θ0) for a θ0 ∈ Θ. From the continuous
RT0 (θ) < RT (θ) − ϵ for θ ∈ Oθ0,η , for some constant ϵ > 0, η > 0. Then
rT (Πj) − r∗j (Πj) ≥ rT (Πj) − rT0 (Πj) > ϵΠj(Oθ0,η ), contradictory with (b).

Ex: Xi ∼ N(µ, σ2), µ ∼ N(a, b), σ2 is known under SEL: δ(X) = X̄
Risk function is continuous in µ if the risk is finite. Let Πj = N(0, j),
Rδ(µ) = V ar X̄ = σ2

n fixed, and rδ(Πj) = σ2

n . Consider Bayes rule w.r.t. Πj :
δj = nj

nj+δ2
X̄, Rδj (µ) = σ2nj2+σ4µ2

(nj+σ2)2
, r∗j (Πj) = σ2nj

nj+σ2
, Πj(Oµ0,η) ≈ 2n√

j
Φ′(ξj)

for some ξj ∈ ((µ0 − η)/
√
j, (µ0 + η)/

√
j). j → 0, (b) satisfied ⇒ X̄ admissible.

Empirical Bayes: Estimate the hyperparameter with historical data or the current
data x, if historical data is not available. This method is called Empirical Bayes
View x from marginal dist. Pξ =

∫
Θ
Pθ(x)dΠθ|ξ. ⇒Find MLE of ξ.

Xi ∼ N(µ, σ2), µ ∼ N(a, b), σ2 is known under SEL, Πθ|ξ = N(0, σ2
0), with ξ = σ2

0

Pξ =
∫
R f(x1:n|µ)π(µ|σ2

0)dµ · · · l(σ2
0) ∝ (nσ2

0 + σ2)−1/2exp{− nx̄2

2(nσ20+σ2)
}

MLE of σ2
0 is σ̂2

0 = max{0, x̄− σ2/n}.
Hierarchical Bayes: put a prior on hyperparameter.
Computation issues: we need Ep(τ) where the expectation is w.r.t. posterior p(θ)
MCMC: · Generate iid θ1:m from a pdf h(θ) > 0 w.r.t ν
·By SLLN, as m → ∞, Êp(τ) = 1

m

∑
j
τ(θj)p(θj)

h(θj)
→a.s.

∫ τ(θ)p(θ)
h(θ)

= Ep(τ).
Minimax Rule
Definition: T∗ = arg infT supθ∈ΘRT (θ)
Control the worst case, but maybe not that good in other case.

Find a Minimax Rule: Let Θ0 ⊂ Θ, and T is minimax of τ(θ) when θ ∈ Θ0. If
supθ∈ΘRT (θ) = supθ∈Θ0

RT (θ), T is minimax on Θ. Proof: By def.
∀T0 ̸= T : supθ∈ΘRT (θ) = supθ∈Θ0

RT (θ) ≤ supθ∈Θ0
RT0 (θ) ≤ supθ∈ΘRT0 (θ)

Similarly, if T is unique minimax on Θ0 also unique on Θ
Minimaxity of a Bayes rule: Let Π be a proper prior on Θ and T be a Bayes rule of
τ(θ) w.r.t. Π. If RT (θ) ≤

∫
RT (θ)dΠ = rT (Π), ∀θ ∈ Θ. i.e. T has constant risk

function or bounded by Bayes risk. Then: (1) T is minimax
(2) If in addition T is the unique Bayes rule, it’s also unique Minimax rule.
Proof: Let δ be any other rule supθ Rδ(θ) ≥

∫
Rδ(θ)dΠ ≥

∫
RT (θ)dΠ ≥ supθ RT (θ)

The last ≥ comes from ”∀θ ∈ Θ”. If unique, second ≥ is >, i.e. unique minimax
Corollary: Let Π be a proper prior on Θ and T be a Bayes rule of τ(θ) w.r.t. Π. If
∃Θ0 s.t. RT (θ) is constant on Θ0 which equals to supθ∈ΘRT (θ), then,
· If Π(Θ0) = 1, T is minimax; · If in addition T is the unique Bayes rule w.r.t.
Π, it is also the unique minimax estimator. Proof:
Π(Θ0) = 1 ⇒ T is minimax on Θ0 (proved above) ⇒ minimax on Θ.

Ex: Xi ∼ Bernoulli(p) estimate p under SEL, with prior p ∼ Beta(α, β):
p|x ∼ Beta(α+

∑
x, β + n−

∑
x), T = E[p|x] = α+

∑
x

α+β+
∑
x

RT (p) =
np(1−p)+(α−pα−pβ)2

(α+β+n)2
. Let α = β =

√
n/2, RT (p) = 1/[4(1 +

√
n)2] is a

constant. ⇒ T =
√
nX̄+1/2√
n+1

is the unique minimax estimator.
Remark: Minimax estimators are irrelevant with prior, but depends on loss function.

Limit of Bayes rules: Let Πj j = 1, 2, · · · be a seq. of priors and rj be the Bayes
risk of a Bayes rule of τ(θ) w.r.t. Πj . If for a rule T with supθRT (θ) < ∞,
lim infj rj ≥ supθ RT (θ), then T is minimax.

Corollary: Let Πj j = 1, 2, · · · be a seq. of priors and rj be the Bayes risk of a Bayes
rule of τ(θ) w.r.t. Πj , If a rule T with constant risk function RT (θ) = r < ∞, and
lim infj rj ≥ r, then T is minimax.

Ex: Xi ∼ N(µ, σ2), θ = (µ, σ2) is unknown under SEL:
First consider Θ = R × (0, c], Θ0 = R × {c}. On Θ0 : RX̄ = c2

n = r constant.
Recall: µ ∼ N(0, j), rj = c2j

nj+c2
→ r. Hence, X̄ is minimax on Θ0 ⇒ also on Θ.

If Θ = R × (0,∞) sup goes to ∞, it’s meaningless.
Hypothesis Testing
Sample X1:n ∼ P ∈ P. Test: H0 : P ∈ P0 v.s. H1 : P ∈ P1, P0 ⊂ P, P1 = P\P0

If P0 contains only 1 element, we call it simple null hypothesis; otherwise composite.
Test is a statistic T (X) takes value in [0, 1]. When X = x is observed, we reject H0

with probability T (x). If T (X) ∈ {0, 1} a.s.P, it’s non-randomized.
Errors: Type I error P[reject H0|H0 is true] i.e. E0[T ]

Type II error P[accept H0|H1 is true] i.e. E1[1 − T ]
Power function: βT (P ) = EP [T (X)], it is a function of P ∈ P

Level α: supP∈P0
βT (P ) ≤ α Size α: supP∈P0

βT (P ) = α

Uniformly Most Powerful Test (UMP)
Test T∗ of size α is a UMP test iff βT∗ (P ) ≥ βT (P ) for all P ∈ P1 and T of level α.
If U(X) is a suff statistic for P ∈ P, for any test T (X), E[T |U ] is a test, with same
power function as T . As E[E[T |U ]] = E[T ] ∀P . To find UMP, consider ψ(U) only.

Neyman-Pearson lemma: Let P0 = {P0}, P1 = {P1}, fj be the pdf of Pj
(i) (Existence). For every α, there exists a UMP test of size α, given by T∗, where
γ ∈ [0, 1], c ≥ 0 is to be determined as E0[T∗(X)] = α.

T∗(X) =


1 f1(X) > cf0(X)

γ f1(X) = cf0(X)

0 f1(X) < cf0(X)

T∗∗(X) =

{
1 f1(X) > cf0(X)

0 f1(X) < cf0(X)

(ii) (Uniqueness). If T∗∗(X) is a UMP test of size α, then ↑ a.s.P
Can only differ on B = {x : f1(x) = cf0(x)}. T∗ is the simplest form of randomized.

Remarks: · Both null and alternative are simple
·UMP exists, and unique except on B ·If ν(B) = 0 ⇒ unique UMP
·If ν(B) > 0 ⇒ Random, but can be constant γ on B; ·λ =

f1(X)

f0(X)
is suff.

Proof: Assume α ∈ (0, 1).
(1) γ, c exist: E0T∗ = P0[f1(X) > cf0(X)] + γP0[f1(X) = cf0(X)]. Let
γ(t) = P0[f1(X) > tf0(X)] it is non-increasing with γ(0) = 1, γ(∞) = 0. Thus
∃c ∈ (0,∞) s.t. γ(c) ≤ α ≤ γ(c−). Set γ =

α−γ(c)
γ(c−)−γ(c) I(γ(c−)̸=γ(c)). Note that

γ(c−) − γ(c) = P0[f1(X) = cf0(X)]. Such γ, c satisfy.
(2) T∗ is UMP: another T s.t. E0T ≤ α : As T∗ > T ⇒ T∗ > 0, f1(X) ≥ cf0(X),
and T∗ < T ⇒ T∗ < 1, f1(X) ≤ cf0(X), there is [T∗ − T ][f1(X) − cf0(X)] ≥ 0∫
[T∗ − T ]f1dν = βT∗ (1) − βT (1) ≥ c

∫
[T∗ − T ]f0dν = c[βT∗ (0) − βT (0)] ≥ 0

(3) Uniqueness: Define A = {x : f1(x) ̸= cf0(x)}. Similarly [T∗ − T ][f1(X) −
cf0(X)] > 0 when X ∈ A, [·][·] = 0 when X /∈ A. As both UMP test with size α:∫
[T∗ − T ][f1(X) − cf0(X)]dν = βT∗ (1) − βT (1) − c[βT∗ (0) − βT (0)] = 0.

⇒ ν(A) = 0 ⇒ T∗ ̸= T∗∗ only on B .
Procedure: λ = f1(X)/f0(X) → if λ monotone in U(X) → U < d or U > d instead.
Ex: X is a sample of size 1, P0 = N(0, 1), P1: e−|x|/2/4. UMP test of level α < 1/3:
λ(X) =

√
π
8 exp{

x2−|x|
2 } monotone in (|x| − 1

2 )
2 As it is continuous, ν(B) = 0.

Then λ > c ⇔ |x| > t or |x| < 1 − t.
Ex: Xi ∼ Bernoulli(p), H0 : p = p0 v.s. H1 : p = p1, where 0 < p0 < p1 < 1:
f(x1:n;p) = p

∑
x(1 − p)n−

∑
x Let Y =

∑
X, λ = (

p1
p0

)Y (
1−p1
1−p0

)n−Y increase in Y .
Find γ,m s.t. α = P0[Y > m] + γP0[Y = m]
Remark: ·T∗ relies on p0 only, not on p1.
·For any p1 > p0, the test T∗ has level α, and it is a UMP test for H1 : p = p1
·Therefore T∗ is a UMP test for testing H0 : p = p0 v.s. H1 : p > p0

Lemma: Suppose that there is a test T∗ of size α s.t. for every P1 ∈ P1, T∗ is UMP for
testing H0 versus the hypothesis P = P1. Then T∗ is UMP for testing H0 v.s. H1.
Extend to a family: ↓ satisfy this.

Monotone Likelihood Ratio Family: Suppose X ∼ Pθ with θ ∈ Θ. Suppose that
P = {Pθ : θ ∈ Θ} is dominated by a measure ν, with PDF fθ = dPθ/dν. For a
statistic Y (X), P has monotone likelihood ratio in Y (X) iff, for any θ1 < θ2:
On supp(fθ1 ) ∪ supp(fθ2 ), fθ2 (x)/fθ1 (x) is a non-decreasing function of Y (x).
Remark: When monotone in Y , UMP given by NP-Lemma, can be defined by Y > d
and the calculation is based on θ1, doesn’t depends on θ2.

Lemma: Suppose X ∼ Pθ with θ ∈ Θ, and P has monotone likelihood ratio in Y (X).
If ψ is a non-dec. function of Y , then g(θ) = E[ψ(Y )] is a non-dec. function of θ.
Proof: Let θ1 < θ2, h(y(x)) = fθ2 (x)/fθ1 (x), Let A = {x : fθ1 (x) > fθ2 (x)} =
{x : h(y(x)) < 1}, B = {x : fθ1 (x) < fθ2 (x)} = {x : h(y(x)) > 1}. Since h(y) is
non-decreasing in y, a = supx∈A ψ(Y (x)) ≤ b = infx∈B ψ(Y (x)). g(θ2) − g(θ1) is∫
ψ(Y (x))(fθ2 (x)−fθ1 (x))dν ≥ a

∫
A
(fθ2 (x)−fθ1 (x))dν+b

∫
B
(fθ2 (x)−fθ1 (x))dν =

(b − a)
∫
B
(fθ2 (x) − fθ1 (x))dν ≥ 0, as

∫
A
(fθ2 (x) − fθ1 (x))dν +

∫
B
(fθ2 (x) −

fθ1 (x))dν =
∫
fθ2 (x)dν −

∫
fθ1 (x)dν = 0.

Ex: Let θ ∈ Θ ⊂ R, η(θ) non-decreasing function of θ. Then the one-parameter ex-
ponential family with fθ(x) = exp{η(θ)T (x) − A(θ)}h(x) has monotone likelihood
ratio in T (X).

Ex: Xi ∼ Uni(0, θ) where θ > 0 PDF of X1:n is fθ(x) = θ−nI(0,θ)(x(n)), for θ1 < θ2,
only need to consider (0, θ1) ∪ (0, θ2) = (0, θ2) fθ2 (x)/fθ1 (x) is non-dec. in x(n).

Theorem: UMP of Monotone Likelihood Ratio Family:
Suppose X ∼ Pθ with θ ∈ Θ, and P has monotone likelihood ratio in Y (X). Con-
sider the testing H0 : θ ≤ θ0 v.s. H1 : θ > θ0, where θ0 is a given constant.

(1) There exists a UMP test of size α, which is given by T∗(X) =


1 Y (X) > c

γ Y (X) = c

0 Y (X) < c

c

and γ are from βT∗ (θ0) = α, and βT (θ) = EθT is the power function of a test T .
(2) βT∗ (θ) is strictly increasing for all θ’s for which 0 < βT∗ (θ) < 1.
(3) For any θ < θ0, T∗ minimizes βT (θ) (type I error of T) among T s.t. βT (θ0) = α.
(4) For any fixed θ1, T∗ is UMP for H0 : θ ≤ θ1 v.s. H1 : θ > θ1, with size βT (θ1).
(5) Assume that Pθ[fθ(X) = cfθ0 (X)] = 0, for any θ > θ0 and c ≥ 0. If T is a test
with βT (θ0) = βT0 (θ0), then for ∀θ > θ0 either βT (θ) < βT0 (θ) or T = T∗a.s.P
Remark:· optimal: θ < θ0 minimize Type I; θ > θ0 minimize Type II
·Uniqueness: When Pθ[fθ(X) = cfθ0(X)] = 0 holds for any θ < θ0 and c > 0,

and the power at θ = θ0 are equal.
Proof: (1) T∗ is UMP for H0 : θ = θ0 v.s. H1 : θ > θ0 from Lemma above, and βT∗
is non-decreasing in θ as T∗ is non-decreasing in Y (Another Lemma). ⇒ T∗ is size
α on {θ ≤ θ0}. Meanwhile any level α, T , for H0 : θ ≤ θ0 v.s. H1 : θ > θ0 is also
level α, T , for H0 : θ = θ0 v.s. H1 : θ > θ0. As T∗ UMP in the ” = ” test ⇒ more
powerful on Θ1 ⇒ also UMP of the ” ≤ ” test.
(2)
(3)The result can be proved using Neyman-Pearson lemma with all inequalities re-
versed.
(4) Similar to (1)
(5)

Ex Xi ∼ Ubif(0, θ) θ > 0. Testing H0 : θ ≤ θ0 v.s. H1 : θ > θ0
Y = X(n), monotone likelihood ratio, UMP is T∗, α = βT∗ (θ0) = n

θn0

∫ θ0
c

xn−1dx =

1 − cnθ−n0 ⇒ c = θ0(1 − α)1/n. For θ > θ0, βT∗ (θ) = 1 − θn0 θ
−n(1 − α). Another

test T = αI(X(n)≤θ0) + I(X(n)>θ0). Same power function when θ > θ0.
As in this case P{fθ1 = fθ0} = 1, is not contradictory with the unique lemma.

One Parameter Exponential Family:
fθ(x) = exp{η(θ)T (x) − A(θ)}h(x), η is strictly monotone function of θ.
·If η is increasing, then T∗ given by Monotone Likelihood Ratio Theorem is UMP
for testing H0 : θ ≤ θ0 v.s. H1 : θ > θ0
· If η is decreasing or test is H0 : θ ≥ θ0 v.s. H1 : θ < θ0 the result is still valid

by reversing inequalities in definition of T∗.
Ex: Xi ∼ N(µ, σ2), µ ∈ R unknown, σ2 is known. H0 : µ ≤ µ0 v.s. H1 : µ > µ0:
Y = X̄, η = nµ

σ2
⇒ T∗ = I(X̄>Cα) ⇒ Cα = σZ1−α/

√
n+ µ0, where Zα = Φ−1(α).

·Discuss: dist of Y is needed. If it is continuous the test is non-randomized.
Ex: Xi ∼ Poisson(θ) with unknown θ > 0, H0 : θ ≤ θ0 v.s. H1 : θ > θ0:
Y =

∑
X ∼ Poisson(nθ), η = log θ ↗ α =

∑∞
j=c+1

enθ0 (nθ0)j

j! + γ
enθ0 (nθ0)c

c! , if
α =

∑∞
j=c+1[e

nθ0 (nθ0)
j/j!] for some integer c it is non-randomized.

Two Sided Tests: For fixed θ0, θ1 < θ2 :
(1)H0 : θ ≤ θ1 or θ ≥ θ2 v.s. H1 : θ1 < θ < θ2 UMP in 1-para exp.
(2)H0 : θ1 ≤ θ ≤ θ2 v.s. H1 : θ > θ1 or θ < θ2 Only UMPU
(3)H0 : θ = θ0 v.s. H1 : θ ̸= θ0 Only UMPU

Generalized Neyman-Pearson lemma: Define the class of tests:
Let f1, · · · , fm+1 be measurable on (Rp,B) and also integrable w.r.t a measure
ν. For given constants t1, · · · , tm let T be the class of measurable functions
ϕ : Rp → [0, 1] satisfying

∫
ϕfidν ≤ ti, i = 1, · · · ,m, and T0 be the set of ϕ’s in T

satisfying the condition with all inequalities replaced by equalities.

Generalized Neyman-Pearson lemma: Result:
If there are constants c1, · · · , cm s.t.

ϕ∗(x) =

{
1 fm+1(x) > c1f1(x) + · · · + cmfm(x)

0 fm+1(x) < c1f1(x) + · · · + cmfm(x)

is a member of T0, then ϕ∗ maximizes
∫
ϕfm+1dν over ψ ∈ T0. If ci ≥ 0 for all i,

ϕ∗ maximizes
∫
ϕfm+1dν over ψ ∈ T

Lemma: f1, · · · , fm+1 and ν given by the generalized Neyman-Pearson lemma. Then
the set M = {(

∫
ϕf1dν, · · · ,

∫
ϕfmdν) : ϕ : Rp → [0, 1]} is convex and closed. If

t1, · · · , tm is an interior point of M , then there exist constants c1, · · · , cm s.t. the
function ϕ∗(x) defined in the generalized Neyman-Pearson lemma is in T0.
Proof: Suppose ϕ∗ ∈ T0, ∀ϕ ∈ T0 (ϕ∗ − ϕ)(fm+1 −

∑
cifi) ≥ 0

Therefore
∫
(ϕ∗−ϕ)(fm+1−

∑
cifi)dν ≥ 0 ⇒

∫
(ϕ∗−ϕ)fm+1dν ≥ ci

∫
(ϕ∗−ϕ)fidν.

Hence, ϕ∗ maximizes
∫
ϕfm+1dν over ψ ∈ T0, If ci > 0 the first line still holds.

UMP Tests for Two-Sided Hypothesis:
X ∼ fθ(x) = exp{η(θ)T (x) − A(θ)}h(x), 1-parameter exp. family.
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(a) For hypothesis (1), a size α UMP is given as following, where ci, γi are s.t.
α = βT∗ (θ1) = βT∗ (θ2).

T∗(X) =


1 c1 < Y (X) < c2
γi Y (X) = ci, i = 1, 2

0 Y (X) < c1 or c2 > Y (X)

(b) T∗ minimizes βT (θ) over θ < θ1, θ > θ2 and T s.t. α = βT (θ1) = βT (θ2)
(c) If T∗ and T∗∗ are two tests given by (a), βT∗ (θ1) = βT∗∗ (θ1), and if the region
{T∗∗ = 1} is to the right of {T∗ = 1}, then βT∗ (θ) < βT∗∗ (θ) for θ > Θ1 and
βT∗ (θ) > βT∗∗ (θ) for θ < Θ1. If both T∗ and T∗∗ satisfy (a) and have power α at
θ = θ1, θ2, then T∗ = T∗∗a.s.P.
Proof: (a) generalized Neyman-Pearson Lemma above. Start from H0 : θ =
θ1, θ2 v.s. H1 : θ = θ3, where θ1 < θ3 < θ2. (βt(θ1), βt(θ1)) is interior point.
⇒ c̃1, c̃2 · · ·T∗ based on Y doesn’t depends on θ3 ⇒ From 3 points→ testing (1).
(b) Consider θ3 < θ1 similar with above. And θ3 > θ2 · · ·

Uniformly Most Powerful Unbiased (UMPU) Tests:
Given α. Test T for H0 : P ∈ P0 v.s. H1 : P ∈ P1 is unbiased of level α iff

βT (P ) ≤ α, P ∈ P0 and βT (P ) ≥ α, P ∈ P1

A test of size α is UMPU iff it is UMP among the unbiased tests of level α.
Similarity: hypothesis: H0 : θ ∈ Θ0 v.s. H1 : θ ∈ Θ1. Let α be a given level of
significance, and Θ̄01 be the common boundary of Θ0 and Θ1. i.e. common limit
points of Θ0 and Θ1.
A test T is similar on Θ̄01 if and only if βT (θ) = α for all θ ∈ Θ̄01.
Remark: · Transform P to θ to make it easier to find the boundary;
· Unbiased are usually similar. Work with similar tests are much easier.

Continuity of the power function: βT (θ) is continuous in θ iff ∀{θj}∞
j=1 ⊂ Θ, θj → θ

implies βT (θj) → βT (θ), where Pj ∈ P and θj = θ(Pj).
If parametric, βT is just a function of θ, the continuous is just that of βT (θ).

Lemma: Hypothesis: H0 : θ ∈ Θ0 v.s. H1 : θ ∈ Θ1 Suppose that, for every T , βT (P )
is continuous in θ. If T∗ is uniformly most powerful among all similar tests and has
size α, then T∗ is a UMPU test.
Proof: continuous: {unbiased} ⊂ {similar}, T∗ is size α and more powerful than
fixed test T = α ⇒ T∗ unbiased and UMP in a larger set ⇒ UMPU

Neyman structure: Let U(X) be a suff statistic for the boundary P̄ = {P : θ ∈ Θ̄01}
and let P̄U be the distribution of U for P ∈ P̄. Test T is said to have Neyman
structure w.r.t. U if E[T |U ] = α, a.s.P̄.
·If T has Neyman structure, ET = E[E(T |U)] = α ∀P ∈ P̄ ⇒T is similar on Θ̄01.
·If all tests similar on Θ̄01 have Neyman structure w.r.t. U , then working with
tests having Neyman structure is the same as working with tests similar on Θ̄01.

Lemma 6.6: Let U(X) be a sufficient and complete statistic for P ∈ P̄, then all tests
similar on Θ̄01 have Neyman structure w.r.t. U .

Theorem: UMPU tests in exponential families:
In Exp family with PDF fθ,ϕ(x) = exp{θY (x) + ϕTU(x) − ζ(θ, ϕ)}
θ is real valued, ϕ can be a vector, Y ∈ R and vector U are statistics.

(1) For test H0 : θ ≤ θ0 v.s. H1 : θ > θ0 a UMPU test of size α is given as:

T∗(Y, U) =


1 Y > c(U)

γ(U) Y = c(U)

0 Y < c(U)

where c(u) and γ(u) are Borel functions
s.t Eθ0 [T∗|U = u] = α for each u

(2) For test H0 : θ ≤ θ1 or θ0 ≥ θ2 v.s. H1 : θ1 < θ < θ2 a UMPU test of size α is
given as:

T∗(Y, U) =


1 c1(U) < Y < c2(U)

γi(U) Y = ci(U)

0 otherwise

where c(u) and γ(u) are Borel functions
s.t Eθ1 [T∗|U = u] = Eθ2 [T∗|U = u] = α
for each u

(3) For test H0 : θ1 ≤ θ ≤ θ2 v.s. H1 : θ < θ1 or θ > θ2 a UMPU test of size α is
given as:

T∗(Y, U) =


1 otherwise

γi(U) Y = ci(U)

0 c1(U) < Y < c2(U)

where c(u) and γ(u) are Borel functions
s.t Eθ1 [T∗|U = u] = Eθ2 [T∗|U = u] = α
for each u

(4) For test H0 : θ = θ0 v.s. H1 : θ ̸= θ0 a UMPU test of size α is given as that in
(3), but with Eθ0 [T∗|U = u] = α and Eθ0 [T∗Y |U = u] = αEθ0 [Y |U = u] for each u.
Remark: This result only for Exp family, and no Uniqueness is assured.

Proof: Given U = u, Y ∼ f() is 1-parameter. in (1)-(4) find Θ̄01, and U comp & suff
on it ⇒ Neyman structure ⇒ UMP among them ⇔ UMP among similar ⇒ UMPU

Ex1 Poisson: X1 ∼ P (λ1), X2 ∼ P (λ2), rewrite the density as:
p =

exp{−(λ1+λ2)}
x1!x2! exp{x2log

λ2
λ1

+ (x1 + x2)log λ1}, and let θ = log
λ2
λ1

Y = X2

Test H0 : λ1 = λ2 v.s. H1 : λ1 ̸= λ2 ⇔ H0 : θ = 0 v.s. H1 : θ ̸= 0, with
U = X1 +X2, ϕ = log λ1 Find a UMPU: P[Y = y|U = u] = (uy )p

y(1− p)u−y where
p = eθ

1+eθ
on the boundary θ = 0 dist. of Y is known. We can find the UMPU.

Ex2: Binomial: X1 ⊥⊥ X2, Xi ∼ Binomial(ni, pi), n1, n2 are known, p1, p2 not.
PMF is (n1

x1
)(n2
x2

)(1 − p1)
n1 (1 − p2)

n2exp{x2log
p2(1−p1)

p1(1−p2)
+ (x1 + x2)log

p1
p1+p2

}

Hence, θ =
p2(1−p1)

p1(1−p2)
, Y +X2, U = X1 +X2. Transform the test into θ UMPU can

be found.
Remark: UMP amd UMPU are very good, but may not exist is some cases.⇒ Find
some test not bad and always exist.

Likelihood Ratio Test: Let L(θ) = fθ(X) be the likelihood function. The likelihood
ratio is defined as λ(X) = supθ∈Θ0

L(θ)/ supθ∈Θ L(θ), where X is the sample with
some size n. For test H0 : θ ∈ Θ0 v.s. H1 : θ ∈ Θ1.
Likelihood ratio (LR) test is any test that rejects H0 iff λ(X) < c, where c ∈ [0, 1].
Remark: ·If λ(X) is well defined, then λ(X) ≤ 1, and tends to 1 if H0 is true;
· Let θ̂ be the MLE of θ, and θ̂0 be MLE on Θ0. Then λ(X) = L(θ̂0)/L(θ̂);
· For given α if ∃cα s.t. supθ∈Θ0

Pθ[λ(X) < cα] = α, size α test can be defined.
Properties: When a UMP or UMPU test exists, an LR test is often the same.
Suppose that X is in a 1-parameter exp family: fθ(x) = exp{η(θ)Y (x)−A(θ)}h(x),
where η is a strictly increasing and differentiable function of θ.

(1) For test H0 : θ ≤ θ0 v.s. H1 : θ > θ0 there is an LR test whose rejection region is
the same as that of the UMP test.

(2) For test H0 : θ ≤ θ1 or θ0 ≥ θ2 v.s. H1 : θ1 < θ < θ2 there is an LR test whose
rejection region is the same as that of the UMP test.

(3) For testing the other two-sided hypotheses, there is an LR test whose rejection
region is equivalent to Y (X) < c1 or Y (X) > c2 for some constants c1 and c2.

Proof: Prove (1) only. (2) and (3) are very similar.
Let θ̂ be be the MLE of θ ∈ Θ. Recall for exp family dist, ∂

∂η log L(θ) = Y (x)−B′(η),
which is a strictly decreasing function shown before. Therefore, the MLE exists and
is unique for η. Since η is strictly increasing of θ, so the MLE of θ exists and unique.
And L(θ) ↗ if θ < θ̂, L(θ) ↘ if θ > θ̂. Thus λ = 1 if θ̂ ≤ θ0 and λ = L(θ0)/L(θ̂) if
θ̂ > θ0. Then λ < c is same as θ̂ > θ0 and L(θ0)/L(θ̂) < c.
As η̂ is s.t. Y (X) = B′(η), with B′ strictly ↗⇒ η̂ ↗ in Y ⇒ θ̂ ↗ in Y
Consequently, for any θ0 d

dY [log L(θ̂) − log L(θ0)] = η(θ̂) − η(θ0). Thus,
log [L(θ0)/L(θ̂)] ↗ in Y when θ̂ > θ0, and ↘ when θ̂ ≤ θ0.
Hence, for any c ∈ (0, 1) λ < c ⇔ θ̂ > θ0 and L(θ0)/L(θ̂) < c ⇔ Y > d

Ex: Xi ∼ Uni(0�θ), H0 : θ = θ0 v.s. H1 : θ ̸= θ0: λ(X) = [X(n)/θ0]
nI(X(n)≤θ0)

Reject when λ < c ⇔ X(n) > θ0 or X(n) < c−nθ0. Take c = α it’s size α.
Ex: Normal Linear Models: X ∼ Nn(Zβ, σ

2In). H0 : Lβ = 0 v.s. H1 : Lβ ̸= 0:
β̂0 is LSE under H0, σ̂2

0 = ||X − Zβ̂0||2/n. supθ∈Θ0
L(θ) = (2πσ̂2

0)
−n/2e−n/2

LR test is λ = [σ̂2/σ̂2
0 ]
n/2 = (

||X−Zβ̂||2

||X−Zβ̂0||2
)n/2. Select c s.t. supθ∈Θ0

Pθ[λ < c] ≤ α

Especially, we consider a two-sample problem. n = n1 + n2, β = (µ1, µ2) and
Z = diag(Jn1 , Jn2 ) with L = (1,−1) to test µ1 = µ2. λ < c ⇔ |t| > c0:

t(X) = {(X̄1 − X̄2)/
√
n−1
1 + n−1

2 }/{[(n1 − 1)S2
1 + (n2 − 1)S2

2 ]/(n1 + n2 − 2)}
Regularity conditions: Let X1:n iid from a PDF fθ with a measure ν where θ ∈ Θ
and Θ is an open set in Rk. The regularity conditions below for the asymptotic of
MLE will be assumed:
(1) fθ(x) is twice continuously differentiable in θ and s.t.: ∂

∂θ

∫
gθdν =

∫
∂
∂θ gθdν.

for gθ = fθ(x) and ∂fθ(x)/∂θ;
(2) The Fisher information matrix, I1(θ), based on X1 is positive definite;
(3) For any given θ ∈ Θ, there exists a positive number cθ and a positive function
hθ s.t. Ehθ(X1) < ∞ and sup

γ:||γ−θ||<cθ
|| ∂

2log fγ (x)

∂γ ∂γT
|| ≤ hθ(x) for all x in the range

of X1, where ||A|| =
√
tr(ATA) for any matrix A.

Thm: Asymptotic LRT: Regularity conditions ↑ hold, Suppose that H0 : θ = g(ϑ),
where ϑ is a (k − r)-vector of unknown parameters and g is a continuously differ-
entiable function from Rk−r to Rk with a full rank ∂g(ϑ)/∂ϑ. Then, under H0:
−2 log λn →d χ2

r: r = dim(θ) − dim(ϑ), and reject λn < exp{− 1
2χ

2
r,α}

Wald Test: H0 : R(θ) = 0: Wn = [R(θ̂)]T {[C(θ̂)]T [In(θ̂)]
−1C(θ̂)}−1R(θ̂). Where

C(θ) = ∂R(θ)/∂θ, In is the Fisher Inf. Matrix of X1:n, and θ̂ is the MLE or RLE.
Score Test: Rn = [sn(θ̃)]

T [In(θ̃)]
−1[sn(θ̃)]. Where sn(θ) = ∂logL(θ)/∂θ is the score

function, and θ̃ is an MLE or RLE under H0 : R(θ) = 0
Remark: They are asymptotically same, and reject when W,R is large.
Thm 6.6: Under regularity conditions:
(1) R(θ) continuously differentiable function from Rk to Rr,Wn →d χ2

r, reject when
Wn > χ2

r,α, where χ
2
r,α is the 1 − α quantile of χ2

r.
(2) Result for Rn is same with that of Wn above.

Confidence Set: Let X be sample from a population P ∈ P. Let θ = θ(P ) be the
parameter of interest. Let C(X) be a random set determined by sample X. The
random set C(X) is said to be a confidence set for θ with confidence level 1 − α,
or a level 1 − α confidence set, if infP∈P P [θ ∈ C(X)] ≥ 1 − α. The exact infimum
infP∈P P [θ ∈ C(X)] is called the confidence coefficient of C(X).
If C(X) is of the form: [θ(X), θ̄X], it’s confidence interval.
[θ(X),∞), it’s confidence lower bound. (−∞, θ̄X], it’s confidence upper bound.

Construct a Confidence Interval:

Pivotal Quantity: If the dist. of R(X, θ) does not depend on θ, then it is a pivotal.
Thm: Pivotal Quantity: Suppose that P ∈ P = {Pθ}. Let T (X) be a real-
valued statistic with CDF FT,θ(t) and let α1 and α2 be fixed positive constants
s.t. α1 + α2 = α < 1/2.
(1) Suppose FT,θ(t) and FT,θ(t−) are non-increasing in θ for each fixed t. Define:
θ̄ = sup{θ : FT,θ(T ) ≥ α1}, and θ = inf{θ : FT,θ(T−) ≤ 1 − α2}. [θ(X), θ̄X] is
1 − α confidence interval;
(2) Suppose FT,θ(t) and FT,θ(t−) are non-decreasing in θ for each fixed t. Result
is θ̄ = sup{θ : FT,θ(T−) ≤ 1 − α2}, and θ = inf{θ : FT,θ(T ) ≥ α1};
(3) If continuous, FT,θ(T ) is a pivotal quantity. Result is same.

Proof: (1): θ > θ̄ ⇒ FT,θ(T ) < α1, θ < θ ⇒ FT,θ(T−) > 1 − α2. P[θ ≤ θ ≤ θ̄] =
1 − P[FT,θ(T ) < α1] − P[FT,θ(T−) > 1 − α2] ≥ 1 − α1 − α2 = 1 − α.

Ex: Xi ∼ Poisson(θ), T =
∑
X ∼ Poisson(nθ) is comp and suff, and we can

find FT,θ(t) =
∑t
j=0 e

−nθ(nθ)j/j! t = 0, 1, · · · , which is continuous in θ, θ̄ is the
unique root of FT,θ(T ) = α1. As FT,θ(T−) = FT,θ(T − 1), θ is the unique root of
FT,θ(T −1) = 1−α2 when T > 0 and θ = 0 when T = 0. As 1

Γ(t)

∫ ∞
λ
Xt−1e−xdx =∑t−1

j=0 e
−λλj/j!, θ̄ = (2n)−1χ2

2(T+1),α1
, θ = (2n)−1χ2

2(T ),1−α2
Inverting acceptance regions of tests: Consider testing problem H0 : θ = θ0 v.s. some
H1 T be a size α test, and the acceptance region is AT (θ0) = {x : T (x) ̸= 1}.
For every θ ∈ Θ, AT (θ) is a function from Θ to subsets of X . ”Inverse”
C(x) = {θ : x ∈ AT (θ)}. If all Tθ is level α, C(x) is level 1 − α CI.
The other direction: C(X) be level 1 − α CI, A(θ0) = {x : θ0 ∈ C(X)} is subset of
X . T = 1 − TA(θ0)(X) is a level α test for H0.

Ex: 1-parameter exp family: fθ(x) = exp{η(θ)Y (x) − A(θ)}h(x), η ↗ strictly.
· Testing H0 : θ = θ0 v.s. H1 : θ > θ0 there is UMP T∗ based on Y . ac-
cept set: A(θ0) = {x : Y (x) ≤ c(θ0)} c(θ) non-dec. in θ can be shown. Then
C(x) = {θ : c(θ) ≥ Y (x)} is a lower bound. If Y is continuous, conf. coef. is 1− α.
· For testing H0 : θ = θ0 v.s. H1 : θ < θ0: Upper bound.
· For H0 : θ = θ0 v.s. H1 : θ ̸= θ0: Confidence Interval.

Evaluation: Better test should have better CI, but hard to say which is better.
Length Criterion: Consider CI’s of a real-valued θ with the same conf. coef.
· The shorter the better · Uniformly shortest may not exists
· Find the best among a class of CI’s.

Shortest CI for Pivotal: Consider real-valued parameter θ and statistic T (X)
(1) Let U be a positive statistic s.t. (T − θ)/U is a pivotal with pdf f that is
unimodal at x0. Consider CI’s for θ: C = {[T − bU, T − aU ] :

∫ b
a
fdx = 1 − α}. If

[T − b∗U, T − a∗U ] ∈ C, with f(a∗) = f(b∗) > 0, a∗ < x0 < b∗, it’s shortest in C.
(2) Suppose that T > 0, θ > 0, T/θ is a pivotal with PDF f , and that x2f(x)

is unimodal at x0. Consider C = {[T/b, T/a] : a, b > 0,
∫ b
a
fdx = 1 − α} If

[T/b∗, T/a∗] ∈ C, a2∗f(a∗) = b2∗f(b∗) > 0, a∗ < x0 < b∗, it’s shortest in C.
· Unimodal: non-decreasing when x < x0, non-increasing when x > x0

Proof: (1) length of CI in C is (b− a)U . When a < b, b− a < b∗ − a∗, if a < a∗:
· a < b ≤ a∗ by unimodal:

∫ b
a
fdx ≤ f(a∗)(b− a) <

∫ b∗
a∗

fdx = 1 − α

· a ≤ a∗ < b < b∗ and a > a∗ is similar. (2) change x to 1/y can be proved
Ex: Xi ∼ N(µ, σ2), if σ2 unknown

√
n(X̄ − µ)/S ∼ tn−1 is the pivotal; if σ2 known√

n(X̄ − µ)/σ ∼ N(0, 1). It is the shortest among that in C.
UMA CI: Let θ ∈ Θ be unknown parameter, and Θ′ ⊂ Θ where true θ /∈ Θ′.
C(X) with conf coef 1 − α is Θ′−UMA iff for any other level 1 − α set C1(X),
∀θ′ ∈ Θ′,P[θ′ ∈ C(X)] ≤ P[θ′ ∈ C1(X)]. It is UMA iff Θ′ = {θ}c

Remark: Less prob. to cover false θ. For lower bound can use Θ′ = {θ′ ∈ Θ : θ′ < θ}
Thm UMA: C(X) be conf set for θ by inverting acceptance regions of non-randomized
tests Tθ0 for H0 : θ = θ0 v.s. H1 : θ ∈ Θθ0 where Θθ0 is a set related to θ0.
If for each θ0, Tθ0 is UMP of size α, then C(X) is Θ′−UMA with conf coef 1 − α,
where Θ′ = {θ′ : θ ∈ Θθ′} region of θ′ that reject true θ.
·In 1-para exp fam with MLR, UMP exists hence UMA exists.

Proof: Assume another level 1−α C1(X) test T1θ0
(X) = 1−TA1(θ0)(X) is also level

α. For non-randomized UMP T : P[θ′ ∈ C] = 1 − P[Tθ′ = 1] ≤ 1 − P[T1θ′ = 1]
UMAU CI: ·Level 1 − α conf set C(X) is Θ′-unbiased iff P[θ′] ≤ 1 − α, ∀θ′ ∈ Θ′.
·Let C(X) be a Θ′-unbiased conf set with conf coef 1−α if for any other level 1−α,
Θ′-unbiased set C1(X), ∀θ′ ∈ Θ′,P[θ′ ∈ C(X)] ≤ P[θ′ ∈ C1(X)], it is Θ′−UMAU
· C(X) is UMAU iff Θ′ = {θ}c

Thm UMAU CI: C(X) be conf set for θ by inverting AR of non-randomized tests Tθ0
for H0 : θ = θ0 v.s. H1 : θ ∈ Θθ0 . If for each θ0, Tθ0 is unbiased of size α, C(X) is
Θ′−unbiased with conf coef 1 − α where Θ′ = {θ′ : θ ∈ Θθ′}.
If Tθ0 is also UMPU for each θ0, C(X) is Θ′−UMAU.
· Proof is similar to UMA. Unbiased: always smaller prob. to cover false θ′.

Ex: Linear Model: X ∼ N(Zβ, σ2Tn), with θ = aT β, with a ∈ R(Z):
Non-rand. test AR is A(θ0) = {x : aT β̂− θ0 > tn−r,α

√
aT (ZTZ)−aSSR/(n− r)}

is size α UMPU for H0 : θ = θ0 v.s. H1 : θ < θ0. Inverting it, there is a Θ′-UMAU
upper bound with conf coef 1−α, and Θ′ = {θ′ : θ ∈ Θθ′} = {θ′ : θ < θ′} = (θ,∞).
The upper bound is θ̄ = aT β̂ − tn−r,α

√
aT (ZTZ)−aSSR/(n− r)
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