Measure Theory

Measure Space: $(\Omega, \mathcal{F}) : \mathcal{F}$ is a σ -field on Ω s.t. (1) $\Omega \in \mathcal{F}$, (2) $\forall A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$, (3) $A_1, A_2, \dots \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}.$

Measure: a measure μ on \mathcal{F} is a non-negative extended real-valued function on \mathcal{F} s.t. any disjointed sets $A_1, A_2, \dots, \mu(\cup A_i) = \sum \mu(A_i)$. $\mu(\Omega)$ can be ∞ . If $\mu(\Omega) = 1$, it's probability measure and $(\Omega, \mathcal{F}, \mu)$ is probability space.

Lebesgue Measure: Consider $\Omega = \mathbb{R}, \mathcal{A} = \{(a, b) : -\infty < a < b < +\infty\}$ i.e. collection of open intervals. $\mathcal{B} = \sigma(\mathcal{A})$ is called Borel sets. On $\mathcal{B}(\mathbb{R})$, Lebesgue measure is the length of the interval, which can be ∞ .

Counting Measure: Let Ω be a countable set, $\mathcal{F} = 2^{\Omega}$, and for $A \in \mathcal{F}$, $\mu(A) = |A|$. Measure Function: s.t. $q(x) = \lim S_n(x)$, where $(1)S_n(x)$ takes finite number of values $\{a_i\}_{i=1}^m$, $\{2\}\{x: S_n(x) = a_i\} \in \mathcal{F}$, $\{3\}S_n(x)$ is non-decreasing w.r.t n.

- Integration: $\int g d\mu = \lim_{n \to \infty} \sum_{i=1}^{n} a_i \mu(\{S_n(x) = a_i\}).$
- Dominated: If $\mu(A) = 0 \Rightarrow \nu(A), \forall A$, we say $\nu \ll \mu$.
- Derivative: $\nu \ll \mu \Rightarrow \exists f \text{ s.t. } \nu(A) = \int_A f d\mu$. f is the derivative.
- Probability Measure: Space $(\Omega, \mathcal{F}, \mathbb{P})$, if $\mathbb{P}(\Omega) = 1$. \mathbb{P} is a probability measure. · If $\exists \mu$ s.t. $\mathbb{P} \ll \mu$, then $\exists p \, s.t. \, \mathbb{P}(A) = \int_A p \, d\mu$, p is the density of \mathbb{P} w.r.t. μ . · A set of prob. measures \mathcal{P} on (Ω, \mathcal{F}) . If $\forall \mathbb{P} \in \mathcal{P}, \mathbb{P} \ll \mu, \rightarrow$ a family of p. Random Variable: A measure function $X : (\Omega, \mathcal{F}) \to (E, \mathcal{G})$. E: sample space.
- Support: $Supp(\mathbb{P}) = \{x : \mathbb{P}[a, b] > 0, a < x < b\}$. If $\exists p$, it's $\{x : p(x) > 0\}$ Convex
- Set: A is a convex set if $\forall x, y \in A, 0 < t < 1 \Rightarrow tx + (1 t)y \in A$.
- Function: Real valued function $\phi(x)$ defined over open interval (a, b) is convex if $\forall a < x, y < b, \phi[rx + (1 - r)y] < r\phi(x) + (1 - r)\phi(y), 0 < r < 1$
- · If ϕ is differentiable: $\phi'(x) < \phi'(y), \forall a < x < y < b$
- · If ϕ is twice differentiable: $\overline{\phi}''(x) \ge 0, \ \forall a < x < b$

Model

- Exponential Family: A parametric family $\{P_{\theta} : \theta \in \Theta\}$ is said to be s-dimensional a Exp family if the distributions P_{θ} have densities of form: $p_{\theta}(x) =$ $exp\{\sum_{i=1}^{s} \eta_i(\theta)T_i(x) - A(\theta)\}h(x)$, where $A(\theta)$ is to normalize the density as $A(\theta) = \log\{\int h(x) exp[\sum_{i=1}^{s} \eta_i(\theta) T_i(x)]\}.$
- Ex: $N(\mu, \sigma^2)$: $p(x) = exp\{\frac{\mu}{\sigma^2}x \frac{1}{2\sigma^2}x^2 \frac{\mu^2}{2\sigma^2} log(\sqrt{2\pi}\sigma)\}.$
- If $\mu = 1$ is known, $\eta^T T$ cannot reduce to 1 term, but the dim of η is 1.
- Natural Exponential Family: Reparameterize by $\eta = \eta(\theta)$, and there is the canonical form: $p_{\eta}(x) = exp\{\eta^T T(x) - B(\eta)\}h(x)$. Where η is the nature parameter, and the nature parameter space is $\Xi = \{\eta : \int p_n d\mu < \infty\}$
- · Canonical form is not unique, as we can use $(c\eta, T/c)$ instead.
- · Dim of θ and η can be different: $\eta_1 = \eta_2 = \frac{\theta}{2}$, $d(\theta) = 1$, $d(\eta) = 2$, $d(\Xi) = 1$ If $\eta \in \mathbb{R}^s$ and $d(\Xi) = s$ i.e. Ξ contains a s-dim. open set, we say it's full rank. Properties:
- If X_1, \dots, X_n indep. exp. family r.v.s, the joint density is still exp. family.
- Decompose: $T = (T_1, \dots, T_s) =: (Y, U)$, then Y, Y|U = u are still exp. family. Any integrable function f and interior point $\eta_0 \in \Xi$, $\mathbb{E}_n f(X) = \int f(x) p_n d\mu$ is in-
- finitely differentiable w.r.t η in a neighborhood of η_0 . The diff. can interchange with int. Ex: take f = 1, $\frac{\partial}{\partial \eta_i} \mathbb{E}_{\eta}[1] = 0 = \mathbb{E}_{\eta} \{ T_i \frac{\partial}{\partial \eta_i} A(\eta) \} \Rightarrow \mathbb{E}_{\eta} T_i \frac{\partial}{\partial \eta_i} A(\eta).$ Similarly: $\frac{\partial^2}{\partial \eta_i \partial \eta_i} \mathbb{E}_{\eta}[1] = 0 \Rightarrow Cov(T_i, T_j) = \frac{\partial^2}{\partial \eta_i \partial \eta_j} A(\eta)$
- MGF: Let $u = (u_1, \dots, u_s), M_T(u) = \mathbb{E}e^{u_1T_1 + \dots + u_sT_s} = e^{A(\eta + u) A(\eta)}$. We need $\eta + u \in \Xi$, and $\mathbb{E}T_i^n = \frac{\partial^n}{\partial u^n} M_y(u)|_{u=0}$.
- Cumulate generating function: $K(u) = \log M(u) = A(\eta + u) A(\eta)$
- Prove NOT Exp family: Take $\frac{1}{2}e^{-|x-\mu|}$ as an example:
- Assume it belongs to some exp family, and the jointed PDF of size n > s is: $f(x;\mu) = 2^{-n} exp\{-\sum |x_i - \mu|\} = exp\{\sum_{j=1}^{s} [\eta_j(\mu) \sum_{i=1}^{n} T_j(x_i)] - nA(\mu)\}$ Remove h(x) by $log[f(x;\mu)/f(x;0)] = \sum |x_i| - \sum |x_i - \mu| = \cdots$
- Note $\psi(x,\mu) = \sum |x_i| \sum |x_i \mu|, \ \tilde{\eta}_j(\mu) = \eta_j(\mu) \eta_j(0), \ \tilde{A}(\mu) = A(\mu) \mu_j(0)$ $A(0), \ \tilde{T}_{j}(x) = \sum_{i=1}^{n} T_{j}(x_{i}) \text{ Above }^{*} \text{ is } \psi(x,\mu) = \sum_{i=1}^{s} \tilde{\eta}_{j}(\mu) \tilde{T}_{j}(x) - n \tilde{A}(\mu).$
- · If the Exp assumption is correct: if $\exists x, y \, s.t. \, \tilde{T}(x) = \tilde{T}(y) \Rightarrow \forall \mu$ same R.H.S. $\psi(x,\mu) = \psi(y,\mu), \forall \mu$. As a function of $\mu, \psi(x,\mu)$ is not differentiable at x_i . Hence, $\tilde{T}(X) = \tilde{T}(Y) \Rightarrow (X_{(1)}, \cdots, X_{(n)}) = (Y_{(1)}, \cdots, Y_{(n)}).$
- · However, we can find liner independent $\tilde{\eta}(\mu_1), \cdots, \tilde{\eta}(\mu_s)$ by choosing μ . There is a full rank linear system. So $\psi(x, \mu_i) = \psi(y, \mu_i), \forall j \Rightarrow \tilde{T}(X) = \tilde{T}(Y)$
- If we choose $min\{x_i\} > max\{\mu_i\} min\{y_i\} > max\{\mu_i\}$, they can have same ψ . If the assumption is correct \Rightarrow same $\tilde{T} \Rightarrow$ same order statistics, which is not necessary. Sufficient: $X \sim P \in \mathcal{P}, T(X)$ is suff. for P if the distribution of X|T doesn't depend
- on P. (parametric: not on θ). The family \mathcal{P} or Θ need to be given. Factorization Thm: $X \sim P \in \mathcal{P}$, and $P \ll \mu$. Then T is suff. iff the density can be
- written as $\frac{d}{du}P(x) = g_p(T(x))h(x)$, i.e. $f(x) = g(T,\theta)h(x)$. Not Unique: T is suff. and $\exists h(U) = T$, U is also suff.
- Exp Family: T is always suff. by the Factorization Thm.
- Minimal Sufficient Statistic: T is MSS iff for any other suff. statistic S exists a measurable function ϕ s.t. $T = \phi(S)$. (Function is always from more to less)

Unique: T_1, T_2 are MSS, by Def there is a 1-1 mapping between them. Existence: Usually exists, but exceptions are possible.

- Check MSS: (1)Suppose $\mathcal{P}_0 \subset \mathcal{P}$ with $a.s.\mathcal{P}_0 \Rightarrow a.s.\mathcal{P}$. If T is suff. for \mathcal{P} and MSS for \mathcal{P}_0 , T is MSS for \mathcal{P} .
- (2)Suppose \mathcal{P} contains PDF's $f_0, f_1, \cdots,$ w.r.t σ -finite measure μ . Let f_{∞} = $\sum_{i=1}^{\infty} c_i f_i$ where $c_i > 0$, $\sum c_i = 1$ and $T_i(X) = f_i(X)/f_{\infty}(X)$ where $f_{\infty}(X) > 0$. Then $T = (T_0, T_1, \dots)$ is MSS. If $\forall i \ge 1$: $\{x : f_i(x) > 0\} \subset \{x : f_0(x) > 0\}$, use f_0 instead of f_∞ . $T = (T_1, T_2, \cdots)$ is MSS.
- Remark: f_{∞} cover the union of the supports, with $\int f_{\infty} d\mu = 1$
- \mathcal{P} only contains countable f_i . \Rightarrow Choose countable from \mathcal{P} , then ues (1). (3)Suppose \mathcal{P} contains PDF's f_n w.r.t μ and T is suff. s.t. for any possible x, y $f_p(x) = f_p(y)\psi(x,y)$ for all $P \Rightarrow T(x) = T(y)$. Then T is MSS. i.e. $f_p(x)/f_p(y)$ doesn't depends on $p \Leftrightarrow T(x) = T(y)$.
- Exp. family: If $\exists \eta_0, \dots, \eta_s \in \Xi$, $s.t.\eta_1 \eta_0, \dots, \eta_s \eta_0$ linear indep. T(x) T(y) = 0is the only root of $\eta^T (T(x) - T(y)) = 0 \Rightarrow T$ is MSS.
- Such η exist if it is full rank.
- Ancillary: V(X) is ancillary if it's distribution doesn't depends on P.
- Complete: T(X) is complete iff any measurable function f:
- $\mathbb{E}_{P}[f(T)] = 0 \forall P \in \mathcal{P} \Rightarrow f = 0 \ a.s.\mathcal{P}$
- · If T is complete, $S = \psi(T)$ is also complete. If T is complete and sufficient, T is MSS: If $\exists t$ is MSS, t = q(T) by definition. Let $h(t) = \mathbb{E}_P(T|t) \to \mathbb{E}_P[h(t) - T] = 0, \forall P \in \mathcal{P}$. As comp. $T = h(t) a.s.\mathcal{P}$. Hence there is 1-1 mapping between T, t, T is also MSS. · Full Rank Exp. family: T is suff. & comp. \Rightarrow MSS: Proof:

T is suff. by Factorization Thm. Let $p_n(t) = h(x)e^{\eta^T t - A(\eta)}$ Suppose f s.t. $\mathbb{E}_n[f(T)] = \int f(t)p_n(t) d\lambda = 0$, for all $\eta \in \Xi$. Let η_0 be a interior point of Ξ , and there is a neighborhood $N_{\epsilon}(\eta_0) \subset \Xi$, with $\forall \eta \in N_{\epsilon}(\eta_0) s.t. \mathbb{E}_{\eta} f_+(T) = \mathbb{E}_{\eta} f_-(T).$ Let $\mathbb{E}_{\eta_0} f_+(T) = \mathbb{E}_{\eta_0} f_-(T) = c$ If c = 0 trivial, if c > 0: $\frac{1}{c} p_{\eta_0}(t) f_+(t)$ and $\frac{1}{c} p_{\eta_0}(t) f_-(t)$ are also PDF

Let $a = \eta - \eta_0$: $\int e^{at} \frac{p\eta_0(t)f_+(t)}{c} d\lambda = \int \frac{p\eta(t)f_+(t)}{c} d\lambda = \int \frac{p\eta(t)f_-(t)}{c} d\lambda = \int \frac{p\eta(t)f_-(t)}{c} d\lambda$

- $\int e^{at} \frac{p_{\eta_0}(t)f_{-}(t)}{d\lambda} d\lambda$. As such a can cover $N_{\epsilon}(\eta_0)$, they have same MGF in a neighborhood of $0 \Rightarrow p_{\eta_0}(t)f_+(t) = p_{\eta_0}(t)f_-(t)a.s. \Rightarrow f_- = f_+ = 0a.s.$ · If not full rank, but exists linear indep.: Check MSS (3)
- Basu's Thm: If T is comp.& suff. any ancillary V: $V \perp T$ Proof: If V is ancillary, $p_A = P[V \in A]$ doesn't depend on $P \in \mathcal{P}$. Let $\eta_A(t) = P[V \in A]$ A|T = t] also indep. of P. As $\mathbb{E}\eta_A(T) = p_A \Leftrightarrow \mathbb{E}[\eta_A(T) - p_A] = 0, \forall P.$ As comp. $\eta_A(T) = \mathbb{P}[V \in A|T] = \mathbb{P}[V \in A] = p_A, a.s.\mathcal{P}, i.e. V \perp T$ Estimator
- Point estimator: statistic T(X) estimate τ . (Fun. of para., or non-para. dist.) Bias: $\mathbb{E}T - \tau$ Unbiased: $\mathbb{E}T = \tau$.
- Loss function: $L(\tau, T(X)) : \Theta \times \{T(X), X \in \mathbb{R}^n\} \to [0, \infty), \text{ e.g. } (T \tau)^2$
- Risk function: $R(\tau, T) = \mathbb{E}_P[L(\tau, T)] P \in \mathcal{P}$. Expectation w.r.t. T and P.
- Admissibility: T is inadmissible if \exists another estimator U s.t. $R(\tau, T) > R(\tau, U)$ for all $P \in \mathcal{P}$. And ">" for some P. If no such U, T is admissible.
- UMVUE: Unbiased T of τ is ... if any other unbiased U: Var $U > Var T \forall P \in \mathcal{P}$ Locally MVUE: VarT < VarU at some fixed $P \in \mathcal{P}$
- · May not exist: Ex: $X \sim Binomial(n, \theta) \tau = \frac{1}{4}$ If T(X) unbiased: $\mathbb{E}_{\theta}T(X) =$ $\sum T(k) \binom{n}{k} \theta^k (1-\theta)^{n-k} = \frac{1}{\theta}$ When $\theta \to 0$ LHS $\to T(0)$ while RHS $\to \infty$. Hence, no unbiased estimator of τ .
- · Estimable: if \exists unbiased estimator of τ , it is called estimable.
- Jensen's ineq.: If $\phi(x)$ is a convex function over open interval I, and $\mathbb{P}[X \in I] = 1$. Then $\phi(\mathbb{E}X) \leq \mathbb{E}[\phi(X)]$. If strictly convex, "<", unless $\mathbb{P}[X=c]=1$.
- Rao-Blackwell Thm: Let $X \sim P \in \mathcal{P}$, and S is a suff. stat. Given loss fun. $L(\tau, a)$, convex in a for any $P \in \mathcal{P}$. Let T(X) be the estimator of τ with finite risk $R(\tau, T)$, then $U = \mathbb{E}[T|S]$ s.t. $R(\tau, U) < R(\tau, T)$. Proof: (Jensen's)
- $R(\tau, T) = \mathbb{E}_{S} \{ \mathbb{E}_{T|S} [L(\tau, T)|S] \} \geq \mathbb{E}_{S} [L(\tau, \mathbb{E}(T|S))] = R(\tau, U)$ Requirement: Convex loss function: e.g. 0-1 loss is not convex.
- Lemman-Scheffe Thm: Suppose S is suff. and comp. for $P \in \mathcal{P}$, and τ estimable \cdot There is a unique unbiased estimator of the form h(S), h is Borel function. h(S) is the unique UMVUE for τ . Proof: estimable $\Rightarrow \exists T \ s.t. \ \mathbb{E}T = \tau \Rightarrow h(S) = \tau$ $\mathbb{E}(T|S)$. $\mathbb{E}h(S) = \mathbb{E}T = \tau \forall P \in \mathcal{P}$ Unbiased \checkmark As S comp, if $\exists \mathbb{E}g(S) = \tau \forall P \in \mathcal{P}$ $\mathcal{P}(h(S)) = g(S) a.s. \mathcal{P}.$ Uniqueness \checkmark Any unbiased $U, h(S) = \mathbb{E}[U|S]$ is same (as unique). By Rao-B, $R(\tau, h(S)) \leq R(\tau, U)$. UMVUE \checkmark Find UMVUE: get a suff & comp S first then: \cdot Find h s.t. $\mathbb{E}h(S) = \tau$;
- Solve $\mathbb{E}_{P}(h(\tilde{S})) = \tau \forall P \in \mathcal{P}$ directly; Find unbiased $T, h(S) = \mathbb{E}(T|S)$ EX1: $X_{i} \sim N(\mu, \sigma^{2}) \mu \in \mathbb{R}, \sigma > 0: T = (\bar{X}, S^{2})$ is comp & suff for $\theta = (\mu, \sigma^{2})$, with
- $\bar{X} \sim N(\mu, \frac{\sigma^2}{n}), \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1} \text{ and } \bar{X} \perp \frac{(n-1)S^2}{\sigma^2}.$ For $\mu : \mathbb{E}\bar{X} = \mu$, it's UMVUE.
- For μ^2 : $\mathbb{E}[\bar{X} \frac{S^2}{n}] = \mu^2$, it's unbiased, and function of T hence UMVUE.
- $\sigma^r\colon \text{Let } Y\sim \chi^2_{n-1}, \ \mathbb{E} S^r = \mathbb{E}\left(\frac{\sigma^2 Y}{n-1}\right)^{\frac{r}{2}} = 2^{r/2} \frac{\sigma^r}{(n-1)^{r/2}} \frac{\Gamma[(n-1+r)/2]}{\Gamma[(n-1)/2]} \text{ When } r>1-n,$
- $\mathbb{E}\frac{(n-1)^{r/2}\Gamma[(n-1)/2]}{2^{r/2}\Gamma[(n-1+r)/2]}S^r = \mathbb{E}k_{n-1,r}S^r = \sigma^r, \text{ it's unbiased and function of } T, \text{ hence}$
- UMVUE. Where $k_{n,r} = [n^{r/2}\Gamma(n/2)]/[2^{r/2}\Gamma((n+r)/2)].$

- $\mu/\sigma: \mu: \overline{X}, \sigma^{-1}: k_{n-1,-1}S^{-1}$ as indep, $\overline{X}k_{n-1,-1}S^{-1}$ unbiased and fun of T. $\tau s.t.\mathbb{P}[X_1 \leq \tau] = p: \tau = \mu + \Psi^{-1}(p)\sigma$, sub result of μ, σ in
- EX2: $X_i \sim Uni(0, \theta)$: $X_{(n)}$ is comp. & suff. with $\mathbb{E}(\frac{n+1}{n}X_{(n)}) = \theta$.
- Approach 2: Let $\mathbb{E}_{\theta} h(S) = \tau$, expand both sides. As a function of θ , The coefficients should be same. Then we can get function h.
- EX3: $X_i \sim Bernoulli(\theta), S = \sum X_i$ is comp & suff $\tau = \theta(1 \theta)$. Assume $\mathbb{E}h(S) = \tau$ for all $\theta \in (0,1) \Rightarrow \mathbb{E}h(S) = \sum h(k) \binom{n}{k} \theta^k (1-\theta)^{n-k} = \theta(1-\theta)$. Divide by $(1-\theta)^r$ on both sides, and let $\rho = \frac{\theta}{1-\theta}$: $\sum_{k=0}^{n} h(k) {\binom{n}{k}} \rho^k = \rho (1+\rho)^{n-2} = \sum_{k=1}^{n-1} {\binom{n-2}{k-1}} \rho^k$ $\Rightarrow h(0) = h(n) = 0, h(k) = {\binom{n-2}{k-1}}/{\binom{n}{k}} = \frac{k(n-k)}{n(n-1)} \Rightarrow h(T) = \frac{T(n-T)}{n(n-1)}$
- EX4: Power series: $\mathbb{P}[X = x] = \gamma(x)\theta^x/c(\theta), \gamma(x)$ known, θ unknown.
- $Poisson(\theta):\gamma(x) = \frac{1}{x!}, c(\theta) = e^{\theta}, Bino(n,p):\gamma(x) = \binom{n}{k}I_{\mathbb{N}}(x), c(\theta) = (1+\theta)^n$ As full rank Exp Family: $T = \langle X_i |$ is comp & suff. PMF of T is $\mathbb{P}[T = t] = t$ $\gamma_n(t)\theta^t/c^n(\theta)$, where $\gamma_n(t) = \sum_{x_1+,\dots,+x_n=t} [\gamma(x_1)\cdots\gamma(x_n)]$ For $\tau = g(\theta)$: $g(\theta) = \frac{\theta^r}{[c(\theta)]^p}$ assume $\mathbb{E}h(T) = \tau$ then $\sum_{t=1}^{\infty} h(t)\gamma_n(t)\theta^t = [c(\theta)]^{n-p}\theta^r =$
- $\sum_{t=1}^{\infty} \gamma_{n-p}(t) \theta^{t+r} = \sum_{t=r}^{\infty} \gamma_{n-p}(t-r) \theta^{t}$ where the second equality is expectation of real number w.r.t PMF of n-p. Then $h(T) = \frac{\gamma_{n-p}(T-r)}{\gamma_n(T)} I_{(T \ge r)}$.
- EX 3rd approach: $X_i \sim f_{\theta} = \theta x^{-2} I_{(x>\theta)}, \tau = \mathbb{P}[X_1 > t]$, where t > 0 is a constant. $X_{(1)}$ is comp & suff while $T = I_{(X_1>t)}$ is unbiased. The UMVUE is $\mathbb{E}[T|X_{(1)}]$ i.e. $\mathbb{P}[X_1 > t | X_{(1)} = x_{(1)}] = \mathbb{P}[\frac{X_1}{x_{(1)}} > \frac{t}{x_{(1)}} | X_{(1)} = x_{(1)}] = \mathbb{P}[\frac{X_1}{x_{(1)}} > \frac{t}{x_{(1)}}]$ as $\frac{X_1}{X_{(1)}}$ is ancillary.Let $S = \frac{t}{x_{(1)}}$. When s < 1, as $\frac{X_1}{X_{(1)}} \ge 1 a.s.$, $\mathbb{P}[\cdot] = 0$. When $s \ge 1\mathbb{P}[\frac{X_1}{X_{(1)}} > s] = \sum_{i=1}^n \mathbb{P}[\frac{X_1}{X_{(1)}} > s, X_{(1)} = x_i] = (n-1)\mathbb{P}[\frac{X_1}{X_{(1)}} > s, X_{(1)} = x_i]$ $x_{n} = (n-1)\mathbb{P}\{X_{1} > sX_{n}, X_{2} > X_{n}, \cdots, X_{n-1} > X_{n}\} = \mathbb{E}\{\mathbb{P}[X_{1} > sX_{n}, X_{2} > X_{n}, X_{2} > X_{n}, X_{n-1} > X_{n}\} = \mathbb{E}\{\mathbb{P}[X_{1} > sX_{n}, X_{2} > X_{n}, X_{n-1} > X_{n}\} = \mathbb{E}\{\mathbb{P}[X_{1} > sX_{n}, X_{2} > X_{n}, X_{n-1} > X_{n}\} = \mathbb{E}\{\mathbb{P}[X_{1} > sX_{n}, X_{n-1} > X_{n}] = \mathbb{E}\{\mathbb{P}[X_{n} > sX_{n}, X_{n-1} > X_{n}] = \mathbb{E}\{\mathbb{P}[X_{n} > sX_{n} > X_{n}] = \mathbb{E}\{\mathbb{P}[X_{n} > x_{n}] = \mathbb{E}\{$
- $X_n, \dots, X_{n-1} > X_n | |X_n|$. Int. with the pdf given above, it is $\frac{n-1}{nt} X_{(1)}$. Hence, $h(X_{(1)}) = \frac{n-1}{nt} X_{(1)} I_{X_{(1)} \le t} + I_{X_{(1)} > t}$ is UMVUE of τ .
- Non-parametric: Order statistic $T = (X_{(1)}, \cdots, X_{(n)})$ is comp & suff. Function $\psi(X_1, \dots, X_n)$ is a function of T iff ψ is symmetric. Hence, unbiased U-statistic is UMVUE. e.g. $\bar{X} : \mathbb{E}X_1$; $S^2 = \frac{1}{n} \sum (X_i - \bar{X})^2 : VarX_1$; $F_n(t) = \sum I_{X_i < t} : F(t)$. Stein's Shrinkage: $X_i \sim N(\theta, I_k)$, where θ is an unknown $k \times 1$ vector. We know \bar{X} is UMVUE for θ . It is proved \bar{X} is inadmissible when $k \geq 3$. Assume $\hat{\theta} = \bar{X} + \frac{1}{n}g(\bar{X})$ with q to be determined s.t. $\mathbb{E}[\|\bar{X} - \theta\|^2] - \mathbb{E}[\|\hat{\theta} - \theta\|^2] > 0$, for $\theta \in \Theta$. Rewrite as: $\mathbb{E}[\|\bar{X} - \theta\|^2] - \mathbb{E}[\|\bar{X} - \theta + \frac{1}{n}g(\bar{X})\|^2] = -\frac{1}{n^2}\mathbb{E}\|g(\bar{X})\|^2 - \frac{2}{n}\mathbb{E}\{g^T(\bar{X})(\bar{X} - \theta)\} =$ $-\frac{1}{n^2}\mathbb{E}\|g(\bar{X})\|^2 - \frac{2}{n}\sum_{j=1}^k \mathbb{E}\{g_j(\bar{X})(\bar{X}_j - \theta_j)\}$. Note $Y = \bar{X}$, with pdf $f(y;\theta)$, then $(Y_j - \theta_j) = -\frac{1}{n} \frac{\partial}{\partial Y_i} \log f(Y, \theta)$. Then integral by parts, there is $\mathbb{E}\{g_j(\bar{X})(\bar{X}_j - \theta_j)\} =$
- $\frac{1}{n} \mathbb{E}[\frac{\partial}{\partial Y_j} g_j(Y)]. \text{ Question reduce to } \mathbb{E}\|g(\bar{X})\|^2 + 2\sum_{j=1}^k \mathbb{E}[\frac{\partial}{\partial \bar{X}_j} g_j(\bar{X})] < 0.$
- Consider $\psi : \mathbb{R}^k \to \mathbb{R}$ s.t. $g_i(x) = \frac{\partial}{\partial x_i} log\psi(x) = \frac{1}{\psi(X)} \frac{\partial}{\partial x_i} \psi(x)$. If $\sum_{i=1}^k \frac{\partial^2}{\partial x_i^2} \psi(x) = \frac{\partial^2}{\partial x_i^2} \frac{\partial^2}{\partial x_i^2} \psi(x)$ 0, we can check the inequality holds, and such ψ is called harmonic function.
- e.g. $\psi(x) = \|x\|^{-(k-2)}, \ k > 3, \ g(x) = -\frac{k-2}{\|x\|^2}x, \ MSE(\hat{\theta}) < MSE(\bar{X}).$

· James-Stein Estimator: Biased but better than all of the unbiased ones. Information Inequality

- Interested in Squared Error Loss. T(X) estimate $\tau(P)$, which is fun, of $P \in \mathcal{P}$ Fisher Information Preparation: 1. Parametric family with PDF $p(x;\theta) \in \mathcal{P}_{\theta}$, and dominated by measure μ ; 2. Support doesn't depend on θ , denoted as A; 3. $\frac{\partial}{\partial \theta} p(x; \theta)$ exists for all $x \in A, \theta \in \Theta$. 4. If T is any statistic with finite mean for all $\theta \in \Theta$, then the order of can be changed: $\frac{\partial}{\partial \theta} \int Tp(x;\theta) dx = \int T \frac{\partial}{\partial \theta} p(x;\theta) dx$. Remark: all Exp family \checkmark , but $Uni(0,\theta)$ & $\frac{1}{b}e^{-(x-a)/b}I_{(x>a)}\times$.
- Fisher Information: Let X be a single sample from $P \in \mathcal{P}_{\theta}$, where parameter space Θ
- is an open set in \mathbb{R} . Suppose conditions above hold, the Fisher Information number is defined as: $I(\theta) = \mathbb{E}\left\{\frac{\partial}{\partial \theta}\log p(X;\theta)\right\}^2 = \int \left(\frac{\partial}{\partial \theta}\log p(x;\theta)\right)^2 p(x;\theta)dx$
- Multi-parameter: Fisher Information Matrix $I(\theta) = \mathbb{E} \{ \frac{\partial}{\partial \theta} \log f_{\theta}(X) [\frac{\partial}{\partial \theta} \log f_{\theta}(X)]^T$ Remarks: Fisher Information doesn't depend on estimator, but on parameterization · Let $\theta = \psi(\eta)$, FI of θ is $I(\theta)$, for $\eta : I_{\eta}(\eta) = [\psi'(\eta)]^2 I(\psi(\eta))$
- Θ is open set: to make $\frac{\partial}{\partial a} p(x; \theta)$ always exists. In Exp fam. full rank is needed · Interpret: Larger $I(\theta) \Rightarrow$ more Information about $\theta \Rightarrow$ better estimated.
- Properties: If $X \perp Y$, $I_{X,Y}(\theta) = I_X(\theta) + I_Y(\theta)$. can be diff. dist. share same θ ;
- · In particular: X_1, \dots, X_n i.i.d $I_n(\theta) = nI_1(\theta);$
 - · Suppose $p(x;\theta)$ twice differentiable in θ , and $\frac{\partial}{\partial \theta} \int \frac{\partial p(x;\theta)}{\partial \theta^T} dx = \int \frac{\partial^2 p(x;\theta)}{\partial \theta \partial \theta^T} dx$, $\theta \in$

 Θ , then $I(\theta) = -\mathbb{E}\left\{\frac{\partial^2}{\partial\theta\partial\theta^T}\log p(x;\theta)\right\}$. Exp family satisfy this one.

- Cramer-Rao Lower Bound: T(X) is an estimator with $\mathbb{E}T = g(\theta)$ being a differentiable function of θ . Suppose P_{θ} has pdf $p(x; \theta)$ w.r.t. a measure μ for all $\theta \in \Theta$, and $p(x; \theta)$ is differentiable in θ , and s.t. $\frac{\partial}{\partial \theta} \int h(x) p(x;\theta) d\mu = \int h(x) \frac{\partial}{\partial \theta} p(x;\theta) d\mu$, $\theta \in \Theta$, for
- h = 1 and h(X) = T(X). Then $Var T \ge \left[\frac{\partial}{\partial \theta}g(\theta)\right]^T [I_n(\theta)] \left[\frac{\partial}{\partial \theta}g(\theta)\right]$.
- Remark: If T is unbiased and Var T = CRLB, it is UMVUE. Proof of k = 1: use $Var T \cdot Var \left[\frac{\partial}{\partial a} \log p(X; \theta) \right] > Cov(T, \frac{\partial}{\partial a} \log p(X; \theta))$, it can be

proved that $Cov = g'(\theta)$ and $Var = I_n(\theta)$ as $\mathbb{E} \frac{\partial}{\partial \theta} \log p(X; \theta) = 0;$

Proof of multi: RHS= $\max_{c} \frac{\left(c^T \frac{\partial}{\partial \theta} g(\theta)\right)^2}{c^T I_n(\theta)c}$. Similar with k = 1, use $c^T \frac{\partial}{\partial \theta} g(\theta)$ instead. · CRLB is not affected by 1-1 Reparameterize. Similar to that in Fisher Information. MLE

- Definition: Let $X = (X_{1:n})$ be a sample with joint PDF $f(x; \theta)$ w.r.t measure μ when $\theta \in \Theta \subset \mathbb{R}^k$. For each outcome x, $f(x; \theta)$ is a function of θ called Likelihood: $L(\theta)$ Let $\bar{\Theta}$ be the closure of Θ , A $\hat{\theta} \in \bar{\Theta}$ s.t. $L(\hat{\theta}) = max_{\theta \in \Theta}L(\theta)$ is called a ML estimate of θ . If $\hat{\theta}$ is a Borel function, it's MLE of θ .
- Let $q(\cdot)$ be a Borel function from $\theta \to \mathbb{R}^p$, p < k, if q is not 1-1, $\hat{\nu} = q(\hat{\theta})$ is defined to be MLE of $\nu = q(\theta)$. If it is 1-1, by invariant of MLE, it's MLE of ν . Computation: \cdot If Θ is finite: Compare directly:

Generally: Get $L(\theta) \to l(\theta)$, first derivative = 0, second < 0. Or Check by def.

- Ex: $X_{1:n} = x_{1:n}$ observed, with $X_i \sim Bernoulli(p) L(p) = p^{n\bar{x}}(1-p)^{n(1-\bar{x})}$ $\Theta = (0,1), \bar{\Theta} = [0,1].$ If $0 < \bar{x} < 1, \bar{x}$ is the unique root with second < 0, and $l(p) \to 0$ when $p \to 0 \text{ or } 1$. If $\bar{x} = 0$ $l(p) = (1-p)^n \searrow$, $\hat{p} = 0 = \bar{x}$. If $\bar{x} = 1$ $l(p) = p^n \nearrow$, $\hat{p} = 1 = \bar{x}$. Hence, \bar{X} is the unique MLE on $\bar{\Theta}$.
- MLE in Exp. fam.: $l(\eta) \propto \eta^T T A(\eta)$, likelihood equation: $\frac{\partial}{\partial n} l(\eta) = T \frac{\partial}{\partial n} A(\eta) = 0$ and $\frac{\partial^2}{\partial n \partial n^T} l(\eta) = -\frac{\partial^2}{\partial n \partial n^T} A(\eta) = -Var(T) \leq 0$. If T(X) in the range of $\frac{\partial}{\partial \eta} A(\eta)$, T is unique MLE of $\mu(\eta) = \frac{\partial}{\partial n} A(\eta)$. As each component of $\mu(\eta)$ is monotone decreasing, $\exists \mu^{-1} s.t. \eta = \mu^{-1}(\frac{\partial}{\partial m}A(\eta))$, and hence $\hat{\eta} = \mu^{-1}(T)$ is the MLE of η .

Asymptotic Properties:

- Conditions: 1. $f(x; \theta)$ are distinct; 2. they have common support; 3. Observations $X = (X_{1:n})$ are iid with density $f(x_i; \theta)$ w.r.t μ ; 4.Space Θ contains an open set, where true θ_0 is interior point.
- Reasonability: With 1-3: For any fixed $\theta \neq \theta_0 \mathbb{P}_{\theta_0}[L(\theta_0|X) > L(\theta|X)] \to 1, n \to \infty$ Consistency: With 1-4: Suppose for almost all x, $f(x; \theta)$ is differentiable in the open set Θ , then, with probability 1 there is at least 1 seq. of $\hat{\theta}_n s.t. \forall \epsilon > 0$, $\mathbb{P}[|\hat{\theta}_n - \theta_0| > 0]$ $\epsilon \rightarrow 0 \Leftrightarrow \hat{\theta}_n \rightarrow_P \theta_0.$
- Efficiency: With 1-4, assuming Fisher Information exists and finite, together with:

 $\cdot \frac{\partial^3}{\partial \theta^3} f(x;\theta)$ exists and continuous in θ ;

 $\cdot \int f(x;\theta) d\mu$ can be 3 times differentiated under integral sign;

· For all $\theta_0 \in \Theta$ there exists positive number c and M(X) with $\mathbb{E}_{\theta}[M_{ijk}(x)] <$ ∞ , s.t. $\left\| \frac{\partial^3 \log f(x;\theta)}{\partial \theta \cdot \partial \theta \cdot \partial \theta} \right\| \leq M_{ijk}(x)$, for all $\|\theta - \theta_0\| < c$.

Then, any consistent seq. $\hat{\theta}: \sqrt{n}(\hat{\theta}_n - \theta_0) \rightarrow^L N(0, [I(\theta)]^{-1})$

Achieves the CRLB for unbiased estimators when $n \to \infty$.

If the root of likelihood equation is unique, it's consistent, asymptotically efficient whether or not it's MLE.

Linear Model

Model Setting: Observations: $(X_1, Z_1), \cdots (X_n, Z_n), Z_i : p \times 1, X_i : 1 \times 1;$ Model: $X_i = Z_i^T \beta + \epsilon_i, i = 1 : n. \beta_{p \times 1}$: unknown parameter, ϵ_i : random error; Matrix Form: $X_{n \times 1} = Z_{n \times p}\beta + \epsilon_{n \times 1}, Z$: design matrix (no ^T here) Estimation: LSE: If $\hat{\beta}$ s.t. $||X - Z\hat{\beta}|| = \min_b ||X - Z\hat{b}||$ it is LSE.

For any p vector a, $a^T \hat{\beta}$ is LSE of $a^T \beta$. Solution: $||X - Z\hat{b}||^2 = Z^T X + b^T Z^T Z b - 2X^T Z b, \frac{\partial}{\partial b} \cdots = 0 \Rightarrow Z^T Z b = Z^T X$ As it is convex in b, any b s.t. $Z^T Z b = Z^T X$ is an LSE of β . If full rank, r(Z) = p

and $\hat{\beta} = (Z^T Z)^{-1} Z^T X$, if not $\hat{\beta} = (Z^T Z)^{-1} Z^T X$. Non-Full Rank case: $\exists \beta_1 \neq \beta_2$, s.t. $Z\beta_1 = Z\beta_2$, the model is nor identifiable.

Reparameterize: If $Z_{n \times p}$ is of rank r, $\exists Q_{r \times p} s.t. Z = Z_*Q$, where $r(Z_*) = r$, and the model can be written as $X = Z\beta + \epsilon = Z_*Q\beta + \epsilon = Z_*\tilde{\beta} + \epsilon$. To estimate $\nu a^T \beta$, only when $a = Q^T c$ for some c it is meaningful, i.e. $a^T \beta = c^T \tilde{\beta}$

Assumptions: A_1 : $\epsilon \sim N(0, \sigma^2 I_n)$, with unknown $\sigma^2 > 0$

A₂: $\mathbb{E}\epsilon = 0$, $Var \ \epsilon = \sigma^2 I_n$, with unknown $\sigma^2 > 0$

- $A_1: \mathbb{E}\epsilon = 0, Var \epsilon \text{ unknown.}$ (Actually $A_1 \Rightarrow A_2 \Rightarrow A_3$)
- Properties: Assume a linear model with A_3 :

1. $a = Q^T c$ for some $c \in \mathbb{R}^r \Leftrightarrow a \in R(Z) = R(Z^T Z)$, row space of Z; 2. If $a \in R(Z)$, the LSE $a^T \hat{\beta}$ is unique and unbiased for $a^T \beta$

- Proof: $a \in R(Z) \Rightarrow \exists b \, s.t. \, a = Z^T Z b \Rightarrow a^T \hat{\beta} = b^T Z^T Z (Z^T Z)^- Z^T X, \mathbb{E} a^T \hat{\beta} =$
- $b^T Z^T Z \beta = a^T \beta$. Unbiased \checkmark . If $\bar{\beta}$ is also LSE $Z^T Z \bar{\beta} = Z^T X \Rightarrow a^T \hat{\beta} a^T \bar{\beta} =$ $b^T Z^T Z(\hat{\beta} - \bar{\beta}) = b^T (Z^T X - Z^T X) = 0.$
- 3. If $a \notin R(Z)$, and A_1 holds, then $a^T \beta$ is not estimable.

Proof: Assume $\exists h(X,Z) \ s.t. \ \mathbb{E}h(X,Z) = a^T \beta$, then $a = \frac{\partial}{\partial \beta} a^T \beta = \frac{\partial}{\partial \beta} \mathbb{E}h(X,Z) =$ $\frac{\partial}{\partial \beta} \int \cdots dx = Z^T c.$ Contradictory.

Ex: One Way ANOVA: $n = \sum n_j$, with integers $n_1, \dots, n_m > 0$, $X_{ij} = \mu_i + \epsilon_{ij}$. ϵ_{ij} are iid random error with $\mathbb{E}\epsilon = 0$, $Var \epsilon = \sigma^2$. Let J_k be the $k \times 1$ vector of ones, $X_i = (X_{i1}, \dots, X_{in_i})^T$, and $X = (X_1, \dots, X_m)^T$, $Z = diag(J_{n_1}, \dots, J_{n_m})$,

 ϵ is similar to X, and $\beta = (\mu_1, \cdots, \mu_m)^T$. Then $Z^T Z = diag(n_1, \cdots, n_m)$, $(Z^T Z)^{-1} = diag(n_1^{-1}, \cdots, n_m^{-1}) \hat{\beta} = (\bar{X}_1, \cdots, \bar{X}_m).$

- Linear Estimator: a linear function of X i.e. $c^T X$ for some fixed c. $\cdot a^T \hat{\beta}$ is linear estimator with $c = Z(Z^T Z)^- a$ $\cdot Var(c^T X) = c^T Var(\epsilon)c$ · If $a \in R(Z)$ and $Var\epsilon = \sigma^2 I_n$, $Var\hat{\beta} = \sigma^2 a^T (Z^T Z)^- a$.
- Properties With $A_2: \exists$ linear unbiased estimator of $a^T \beta$ iff $a \in R(Z)$. · Gauss-Markov Thm: If $a \in R(Z)$, then the LSE $a^T \hat{\beta}$ is best linear unbiased estimator (BLUE) of $a^T \beta$. As $Var a^T \hat{\beta}$ is min. among all the unbiased linear estimator. Proof: 1. Assume $\exists c \in \mathbb{R}^p$ s.t. $a^T \beta = \mathbb{E}c^T X = c^T Z\beta, \forall \beta \in \mathbb{R}^p \Rightarrow a = Z^T c.$ 2. As $a \in R(Z)$, $\exists b \, s.t. \, a^T \hat{\beta} = b^T (Z^T Z) \hat{\beta} = b^T Z^T X$ by def of LSE, and hence $Varc^{T}X = Var(c^{T}X + a^{T}\hat{\beta} - a^{T}\hat{\beta}) = Var(c^{T}X - b^{T}Z^{T}X) + Var(a^{T}\hat{\beta}) +$ $2Cov(c^T X - b^T Z^T X, a^T \hat{\beta}) > Var(a^T \hat{\beta}) + 2\sigma^2 \{c^T Z b - b^T Z^T Z b\}$ as shown above $a = Z^T c$, $c^T Z b - b^T Z^T Z b = a^T b - a^T b = 0$.

Properties with A_1 : · LSE $a^T \hat{\beta}$ is UMVUE for all estimable $a^t \beta$

- · UMVUE for σ^2 is $\hat{\sigma}^2 = (n-r)^{-1} ||X Z\hat{\beta}||^2$, r is rank of Z.
- · Fir estimable $a^T\beta$: $a^T\hat{\beta} \sim N(a^T\beta, \sigma^2 a^T(Z^TZ)^-Z), (n-r)\hat{\sigma}^2/\sigma^2 \sim \chi^2_{n-r}$. Proof: 1. As it is LSE $Z^T Z \hat{\beta} = Z^T X \Rightarrow ||X - Z\beta||^2 = ||X - Z\hat{\beta}||^2 + ||Z\hat{\beta} - Z\beta||^2 =$ $||X - Z\hat{\beta}||^2 - 2\beta^T Z^T X + ||Z\beta||^2 + ||Z\hat{\beta}||^2$, the pdf is $exp\{\frac{1}{2}\beta^T Z^T X - \frac{1}{2\pi^2}[||X - \beta||^2]\}$ $Z\hat{\beta}\|^2 + \|Z\hat{\beta}\|^2 + \cdots \}$. $(Z^T X, \|X - Z\hat{\beta}\|^2)$ is comp and suff for (β, σ^2) . If estimable, $a\hat{\beta}$ is unbiased function of $T \Rightarrow \text{UMVUE}$.
- 2. $\mathbb{E} \| X Z\hat{\beta} \|^2 = tr\{ VarX VarZ\hat{\beta} \} = \sigma^2 \{n tr[Z(Z^TZ)^-ZT] \} = \sigma^2 \{n tr[Z(Z^TZ)^-ZT] \}$ $tr[(Z^T Z)^- ZTZ] = \sigma(n-r)$, hence unbiased function of T. 3. As it is linear function of normal, it still normal distribution
- Consistency of LSE: Model $X = Z\beta + \epsilon$ with A_3 , consider LSE $a^T \hat{\beta}$ with $a \in R(Z)$. Let $\lambda_+[A]$ be the largest eigenvalue of A Suppose $\sup_n \lambda_+[Var\epsilon] < \infty$ and $\lim_{n \to \infty} \lambda_{+}[(Z^{T}Z)^{-}] = 0, \text{ then } a^{T}\hat{\beta} \to L^{2} a^{T}\beta. \text{ i.e. } \mathbb{E}\|a^{T}\hat{\beta} - a^{T}\beta\|^{2} \to 0, a^{T}\hat{\beta} \to_{P} a^{T}\beta.$ Proof: $a \in R(Z) \Rightarrow \mathbb{E}[a^T \hat{\beta}] = a^T \beta$, only need to check $Var a^T \hat{\beta} =$ $a^{T}(Z^{T}Z)^{-}Z^{T}[Var\epsilon]Z(Z^{T}Z)^{-}a$ which is less or equal $\lambda_{+}[Var\epsilon]a^{T}(Z^{T}Z)^{-}a \leq \lambda_{+}[Var\epsilon]a^{T}(Z^{T}Z)^{-}a$ $\lambda_+ [Var\epsilon]\lambda_+ [(Z^T Z)^-] ||a||^2 \to 0.$

Asymptotic Normality: Model $X = Z\beta + \epsilon$ with A_3 Suppose $\inf_n \lambda_-[Var\epsilon] > 0$ and $\lim_{n \to \infty} \max_{1 \le i \le n} Z_i^T (Z^T Z)^- Z_i = 0$. Suppose further $n = \sum m_i$ with all of m_i bounded by some *m*. Random error $\epsilon = (\xi_1, \dots, \xi_k), \xi_j \in \mathbb{R}^{m_j}$ and $\xi's$ are independent

• If
$$\sup_i \mathbb{E}|\epsilon_i|^{2+\delta} < \infty$$
 for any $a \in R(Z)$, $\frac{a^T(\hat{\beta}-\beta)}{\sqrt{Var(a^T\hat{\beta})}} \to^d N(0,1)$
• It still holds if $m_1 = \cdots = m_k$, $\xi's$ have same distribution.

Lemma: following is sufficient to $\lim_{n \to \infty} \max_{1 \le i \le n} Z_i^T (Z^T Z)^- Z_i = 0$:

- a). $\lambda + [(Z^T Z)^-] \to 0$ and $Z_n^T (Z^T Z)^- Z_n \to 0$ as $n \to 0$
- b). $\exists \nearrow \text{ seq } \{a_n\} \text{ s.t. } \frac{a_n}{a_{n+1}} \to 1, \text{ and } \frac{Z^T Z}{a_n} \text{ converge to a positive defined matrix.}$
- Ex1: $X_i = \beta_0 + \beta_1 t_i + \epsilon_i \ i = 1 : n$. If $\frac{\sum t_i^2}{n} \to c, \frac{\sum t_i}{n} \to d, \ c > d^2$. b) in Lemma \checkmark . Ex2: One-Way ANOVA: $\max_{1 \le i \le n} Z_i^T (Z^T Z)^- Z_i = \lambda_+ [(Z^T Z)^-] = max \frac{1}{n_i}$. If min $n_i \to \infty$, Asymptotic Normality \checkmark . Decision Theory X: a sample from population $P \in \mathcal{P}$ X: the range of X \mathcal{A} : the range of allowable actions $(\mathcal{A}, \mathcal{F}_{\mathcal{A}})$: the action space Decision Rule: A measurable function $T: (\mathcal{X}, \mathcal{F}_{\mathcal{X}}) \to (\mathcal{A}, \mathcal{F}_{\mathcal{A}})$ Ex: \cdot Point Estimation: \mathcal{A} is the parameter space Θ · Hypothesis testing: \mathcal{A} is reject or accept H_0 Loss function: Evaluate action $a: L(P, a) : \mathcal{P} \times \mathcal{A} \to [0, +\infty).$ Risk function: Evaluate rule $T_{(X)}$: $R_T(P) = \mathbb{E}_P[L(P, T(X))] = \int L(P, T(X)) dP_X$ If \mathcal{P} is parametric, θ is used instead. Comparison of Two Decision Rules: T_1 is $\cdot \cdot T_2$ if:
- · as good as: $R_{T_1}(P) \leq R_{T_2}(P), \forall P \in \mathcal{P};$

- better than: T_1 is as good as T_2 , and $R_{T_1}(P) < R_{T_2}(P)$ for some $P \in \mathcal{P}$;
- · Equivalent: $R_{T_1}(P) = R_{T_2}(P), \forall P \in \mathcal{P};$
- · Optimal: $T_* \in \mathcal{T}$ is \mathcal{T} -optimal if T_* is as good as any other $T \in \mathcal{T}$;
- · Admissible: If no $U \in \mathcal{T}$ is better than $T \in \mathcal{T}$, T is \mathcal{T} -admissible.
- · If there are two \mathcal{T} -admissible and not equivalent rules \Rightarrow no optimal.
- e.g. Very small risk at some P, no better rules, but not as good as others. Randomized Decision Rule: δ is a function on $\mathcal{X} \times \mathcal{F}_A$, s.t. $\forall x \in \mathcal{X}, \delta(x, \cdot)$ is a measure on $(\mathcal{A}, \mathcal{F}_{\mathcal{A}})$. i.e. If X = x is observed, we have a distribution of actions. · Non-Randomized Rules can be regarded as $\delta(x, \{a\}) = I_{\{a\}}(T(X))$ · To show δ is randomized rule, we need to show $\delta(x, \cdot)$ is a prob. measure. Loss function: $L(P, \delta, x) = \int_{\Delta} L(P, a) d\delta(x, a).$
- Risk function: $R_{\delta}(P) = \mathbb{E}_{P}[L(P, \delta, X)] = \int_{C} X \int_{A} L(P, a) d\delta(x, a) dP_{X}$ Randomized Rule with Discrete Dist.: $\delta(x, \cdot)$ assign $p_j(x)$ to non-randomized $T_j(x)$
- Ex: Non-rand. $T_1(X) = \overline{X}$, under SEL: $L_1 = (\overline{X} \theta)^2$, $R_1 = (\mu \theta)^2 + \frac{\sigma^2}{\sigma}$

- Non-rand. $T_2(X) = c$, under Squared Error Loss: $L_2 = (c \theta)^2$, $R_2 = (c \theta)^2$ Randomized: $T = T_1$ with $p, T = T_2$ with $1 - p, L = pL_1 + (1 - p)L_2, R = \cdots$
- Ex: Hypothesis Testing: $\mathcal{P}_0 \subset \mathcal{P}, \mathcal{P}_1 = \mathcal{P}_0^c$: $H_0: P \in \mathcal{P}_0 v.s. H_1: P \in \mathcal{P}_1$. With 0-1 Loss, and $\mathcal{A} = \{0, 1\}, T : \mathcal{X} \to \mathcal{A}$. Loss L = 0 if correct L = 1 if not. Risk $R_T(P) = \mathbb{P}[T=1]I_{P \in \mathcal{P}_0} + \mathbb{P}[T=0]I_{P \in \mathcal{P}_1}$
- Thm: Randomized & Non-Randomized: Suppose that \mathcal{A} is convex and L(P, a)is a convex function of a for any $P \in \hat{\mathcal{P}}$. Let δ be a randomized rule s.t. $\int_{A} \|a\| d\delta < \infty$ for $\forall x \in \mathcal{X}$. Let $T(X) = \int_{A} a d\delta(x, a)$, then $L(P, T) \leq L(P, \delta, x)$ for any $x \in \mathcal{X}, P \in \mathcal{P}$. Proof based on Jensen's inequality. Squared Error Loss, Absolute Loss, etc are convex; 0-1 Loss is not convex.
- Interpret: Non-randomized T get from δ will be better.
- Bayes Risk: Average of risk function $R_T(P)$ over \mathcal{P} : $r_T(\Pi) = \int_{\mathcal{P}} R_T(P) d\Pi$. Where Π is a known prob. measure on $(\mathcal{P}, \mathcal{F}_{\mathcal{P}})$. $r_T(\Pi)$ is the Bayes risk of T w.r.t. Π . If $T_* \in \mathcal{T}$ s.t. $r_{T_*}(\Pi) \leq r_T(\Pi), \forall T \in \mathcal{T}$. T_* is called a \mathcal{T} -Bayes rule w.r.t Π . Minimax Rule: If $T_* \in \mathcal{T}$ and $\sup_{P \in \mathcal{P}} R_{T_*}(P) \leq \sup_{P \in \mathcal{P}} R_T(P), \forall T \in \mathcal{T}$. T_* is
- called \mathcal{T} -minimax rule. Recall Bayes Analysis:
- X is from a population in a parametric family $\mathcal{P} = \{p_{\theta} : \theta \in \Theta\}$, where $\Theta \subset \mathbb{R}^k$ for some fixed $k \in \mathbb{N}^+$. Real valued θ is a realization of r.v. $\tilde{\theta} \sim \pi$, π is the prior dist. Sample $X \in \mathcal{X}$ from $P_{\theta} = P_{X|\theta}$, it is conditional dist. of $X|\tilde{\theta} = \theta$.

Posterior: dist. of $\tilde{\theta}$ conditional on X = x: $\pi(\theta|x) = \int f(x_{1:n}|\theta)\pi(\theta)dx_{1:n}$

Marginal: dist. of X = x: $m(x) = \int f(x_{1:n}|\theta) \pi(\theta) d\theta$

Bayes Formula: Assume $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ is dominated by measure ν , and $f_{\theta}(x) = \frac{dP_{\theta}}{du}$ is a Borel function on $(\mathcal{X} \times \Theta, \sigma(\mathcal{B}_{\mathcal{X}} \times \mathcal{B}_{\theta}))$. Let Π be a prior dist. on Θ . Suppose that $m(x) = \int_{\Theta} f_{\theta}(x) d\Pi > 0$, Π is another measure on \mathcal{X} . Then the

Posterior dist
$$P_{\theta|x} \ll \Pi$$
 and $\frac{dx_{\theta|x}}{d\Pi} = \frac{f_{\theta}(x)}{d\Pi(x)}$. Further, if $\Pi \ll \lambda$ for a measure λ and $\frac{d\Pi}{d\Pi(x)} = \frac{r(\theta)}{r(x)}$, there $\frac{dP_{\theta|x}}{d\Pi(x)} = \frac{f_{\theta}(x)}{r(x)}$.

 $\frac{d\Pi}{d\lambda} = \pi(\theta)$, then $\frac{d\Pi}{d\lambda} = f_{\theta}(x)\pi(\theta)/m(x)$.

Bayes Action: Let \mathcal{A} be an action space in a decision space, and $L(\theta, a) > 0$ be a loss function. For any $x \in \mathcal{X}$, a Bayes action w.r.t. Π is any $\delta(x) \in \mathcal{A}$ s.t. $\mathbb{E}[L(\tilde{\theta}, \delta(x)|X=x)] = \min_{a \in \mathcal{A}} \mathbb{E}[L(\tilde{\theta}, a|X=x)], \text{ the } \mathbb{E}[\cdot] \text{ is w.r.t posterior } P_{\theta|x}.$ Remarks: For each $x \in \mathcal{X}$ $\delta(x)$ minimize posterior expected loss, and hence we can get a mapping $\mathcal{X} \to \mathcal{A}$;

· If the mapping is a measurable function, it is a Bayes Rule;

Bayes action depends on prior and loss function.

Properties: Assume conditions in Bayes Formula Thm satisfied, and loss function $L(\theta, a)$ is convex in a for any fixed θ . And for each $x \in \mathcal{X}$, $\mathbb{E}[L(\bar{\theta}, a | X = x)] < \infty$ for some a

- 1) If $\mathcal{A} \subset \mathbb{R}^p$ is compact, a Bayes action exists for each $x \in \mathcal{X}$;
- 2) If $\mathcal{A} \subset \mathbb{R}^p$ and $L(\theta, a)$ goes to ∞ as $||a|| \to \infty$ uniformly in $\theta \in \Theta_0 \subset \Theta$ with $\Pi(\Theta_0) > 0$, a Bayes action exists for each $x \in \mathcal{X}$;
- 3) If $L(\theta, a)$ is strictly convex for each fixed θ in a in 2), 3), the result will be unique Ex1: $X_i \sim N(\mu, \sigma^2), \mu \sim N(a, b), \sigma^2$ is known under Squared Error Loss:

$$\pi(\mu|x) = f(x_{1:n}|\mu)\pi(\mu)/m(x) \propto f(x_{1:n}|\mu)\pi(\mu) \propto exp\{-\frac{nb+\sigma^2}{2b\sigma^2}[\mu^2 - 2\frac{b\sum x + a\sigma^2}{nb+\sigma^2}\mu]\}$$

$$\mu|x \sim N(\frac{b\sum x + a\sigma^2}{nb+\sigma^2}, \frac{b\sigma^2}{nb+\sigma^2}), \mathbb{E}[L|X=x] = \mathbb{E}[(\mu-\delta)^2|x] = (\delta - \frac{b\sum x + a\sigma^2}{nb+\sigma^2})^2 + \frac{b\sigma^2}{nb+\sigma^2}$$

$$\Rightarrow$$
 Under SEL: $\delta(x) = \mathbb{E}[\mu|X = x] = \frac{b\sum x + a\sigma^2}{nb + \sigma^2}$

Ex2: Same setting with Ex1, but for $q(\mu)$, e.g. $q(\mu) = \mu^2$: $\delta = \mathbb{E}[q(\mu)|X = x]$.

- Ex3: $X_i \sim Poisson(\lambda), \lambda \sim Gamma(a, b)$ find Bayes estimator of λ^j : $f(x_{1:n}|\lambda) \propto \lambda^{\sum x} e^{-n\lambda}, \ \pi(\lambda) = \frac{b^a}{\Gamma(a)} \lambda^{a-1} e^{-b\lambda}, \ \pi(\lambda|x) \propto \lambda^{\sum x+a-1} e^{-(b+n)\lambda}$
- $\lambda | x \sim Gamma(\sum x + a, b + n) =: Gamma(a', b')$, the Bayes rule under SEL is:

$$\mathbb{E}[\lambda^j | X = x] = \int_0^\infty \frac{b'a'}{\Gamma(a')} \lambda^{a'+j-1} e^{-b'\lambda} d\lambda = \frac{b'a'}{\Gamma(a')} \frac{\Gamma(a'+j)}{b'^{j+a'}}.$$

- Ex4: Bayes Classifier: label $y_i = 1, \cdots, k, X_i | y_i = k \sim p_k(x_i)$. Assume labels have prior π and under 0-1 loss the $\hat{y} = \arg \max_{y} p(y) \prod p(x_i|y)$.
- Conjugate Prior: If a prior is in the same parametric family as the posterior, it's ... Exp. Family: $f(x;\eta) = h(x)exp\{\eta^T T(x) - A(\eta)\}$ always have a conjugate prior in the form of $\pi(\eta; \xi, \nu) = g(\xi, \nu) exp\{\eta^T \xi - \nu A(\eta)\}$, where ν is a scalar and ξ is a vector in the same length of n.
- Admissibility: In a decision problem, let $\delta(X)$ be a Bayes rule w.r.t. a prior Π .
- (i) If $\delta(X)$ is a unique Bayes rule, then $\delta(X)$ is admissible.
- (ii) If Θ is a countable set, the Bayes risk $r_{\delta}(\Pi) < \infty$, and Π gives positive probability to each $\theta \in \Theta$, then $\delta(X)$ is admissible.
- (iii) Let \mathcal{T} be the class of decision rules with continuous risk fun. If $\delta(X) \in \mathcal{T}$, $r_{\delta}(\Pi) < \infty$, and Π gives positive prob. to any open subset of Θ , then $\delta(X)$ is \mathcal{T} -admissible.

Remark: If T is better \Rightarrow T has same posterior risk as $\delta(X) \Rightarrow$ T is also Bayes rule Problem: strictly better on Θ_0 , where $\Pi(\Theta_0) = 0$. No such Θ_0 in i) ii) iii).

Bias: If $\delta(X)$ is Bayes estimator of $\tau(\theta)$ under SEL, w.r.t. Π . If $\delta(X)$ is unbiased, Bayes risk $r_{\delta}(\Pi) = 0$. Proof: under SEL $\delta(X) = \mathbb{E}_{\theta}[\tau(\theta)|X]$. If unbiased $\mathbb{E}_X[\delta(X)|\theta] = \tau(\theta)$. Hence $\mathbb{E}[\delta(X)\tau(\theta)] = \mathbb{E}_{\theta}\{\mathbb{E}_X[\delta(X)\tau(\theta)|\theta]\} = \mathbb{E}_{\theta}[\tau^2(\theta)]$, Similarly $\mathbb{E}[\delta(X)\tau(\theta)] = \mathbb{E}_X \{\mathbb{E}_{\theta}[\delta(X)\tau(\theta)|X]\} = \mathbb{E}_X[\delta^2(X)]$. And the Bayes risk is $r_{\delta} = \mathbb{E}_{\theta} \{ \mathbb{E}_X [(\delta(X) - \tau(\theta))^2 | \theta] \} = \mathbb{E}\delta^2(X) + \mathbb{E}\tau^2(\theta) - 2\mathbb{E}[\delta(X)\tau(\theta)] = 0.$ Remark: Usually biased, comes from prior. But usually vanish when $n \to \infty$.

Generalized Bayes Action: The minimization in the def. of Bayes action is same as: $\int_{\Theta} L(\theta, \delta(x)) f_{\theta}(x) d\Pi = \min_{a} \int_{\Theta} L(\theta, a) f_{\theta}(x) d\Pi.$ This def. also works when Π is not a prob, measure on Θ , in with case m(x) may not finite, and we can not get $\pi(\theta|x)$. δ solved from above is called Generalized Bayes Action.

· Improper prior: $\Pi(\Theta) \neq 1$ · Proper prior: $\Pi(\Theta) = 1$ Ex: $X_i \sim N(\mu, \sigma^2), \ \mu \in \Theta \subset \mathbb{R}$ unknown, $\sigma^2 > 0$ known, under SEL:

No Information: If $\Theta = [a, b]$ we can set $\Pi = Uni(a, b)$. But if $\Theta = \mathbb{R}$, let $\pi(\theta) = 1$ for all θ , it is improper. Minimize $\int_{\mathbb{R}} (\mu - a)^2 (2\pi\sigma^2)^{-n/2} exp\{-\frac{\sum(x_i - \mu)^2}{2\sigma^2}\}d\mu$ is same with minimize: $\int_{\mathbb{R}} (\mu - a)^2 exp\{-\frac{1}{2\sigma^2}[\sum(x_i - \bar{x})^2 + n(\bar{x} - \mu)^2]\}d\mu$ Let $\frac{\partial}{\partial a}[\cdot] = 0$, the Bayes rule is $\delta(x) = \frac{\int_{\mathbb{R}} \mu exp\{-n(\bar{x} - \mu)^2/(2\sigma^2)\}d\mu}{\int_{\mathbb{R}} exp\{-n(\bar{x} - \mu)^2/(2\sigma^2)\}d\mu} = \bar{x}$. If $\Pi = N(a, b)$, it is

$$\frac{\sigma^2}{nb+\sigma^2}a + \frac{nb}{nb+\sigma^2}\bar{x}$$
, converge to \bar{x} when $b \to \infty$.

Admissibility of Generalized Bayes Rules: Suppose that Θ is an open set of \mathbb{R}^k . Let \mathcal{T} be the class of decision rules having continuous risk functions. A decision rule $T \in \mathcal{T}$ is \mathcal{T} -admissible if there exists a sequence $\{\Pi_j\}$ of (possibly improper) priors, which give positive measures to any open set, such that

(a) the generalized Bayes risks $r_T(\Pi_j)$ are finite for all j;

(b) for any
$$\theta_0 \in \Theta$$
 and $\eta > 0$ $\lim_j \frac{r_T(\Pi_j) - r_j(\Pi_j)}{\Pi_j(O_{\theta_0,\eta})} = 0$, where $r_j^*(\Pi_j) = \inf_T r_T(\Pi_j)$,
and $O_{\theta_j} = \{\theta \in \Theta : \|\theta - \theta_0\| \le \eta\}$ with $\Pi_j(O_{\theta_j,\eta}) \le \infty$ for all j .

Proof: Suppose T is not \mathcal{T} -admissible. Then there exists $T_0 \in \mathcal{T}$ s.t. $R_{T_0}(\theta) \leq R_T(\theta)$ for all θ and $R_{T_0}(\theta_0) < R_T(\theta_0)$ for a $\theta_0 \in \Theta$. From the continuous $R_{T_0}(\theta) < R_T(\theta) - \epsilon$ for $\theta \in O_{\theta_0,\eta}$, for some constant $\epsilon > 0, \eta > 0$. Then $r_T(\Pi_j) - r_j^*(\Pi_j) \geq r_T(\Pi_j) - r_{T_0}(\Pi_j) > \epsilon \Pi_j(O_{\theta_0,\eta})$, contradictory with (b). \Box

Ex: $X_i \sim N(\mu, \sigma^2)$, $\mu \sim N(a, b)$, σ^2 is known under SEL: $\delta(X) = \bar{X}$ Risk function is continuous in μ if the risk is finite. Let $\Pi_i = N(0, j)$,

 $R_{\delta}(\mu) = Var \bar{X} = \frac{\sigma^2}{n} \text{ fixed, and } r_{\delta}(\Pi_j) = \frac{\sigma^2}{n}. \text{ Consider Bayes rule w.r.t. } \Pi_j:$ $\delta_j = \frac{nj}{nj+\delta^2} \bar{X}, R_{\delta_j}(\mu) = \frac{\sigma^2 nj^2 + \sigma^4 \mu^2}{(nj+\sigma^2)^2}, r_j^*(\Pi_j) = \frac{\sigma^2 nj}{nj+\sigma^2}, \Pi_j(O_{\mu_0,\eta}) \approx \frac{2n}{\sqrt{j}} \Phi'(\xi_j)$

for some $\xi_j \in ((\mu_0 - \eta)/\sqrt{j}, (\mu_0 + \eta)/\sqrt{j})$. $j \to 0$, (b) satisfied $\Rightarrow \bar{X}$ admissible. Empirical Bayes: Estimate the hyperparameter with historical data or the current data x, if historical data is not available. This method is called Empirical Bayes View x from marginal dist. $P_{\xi} = \int_{\Theta} P_{\theta}(x) d\Pi_{\theta|\xi}$. \Rightarrow Find MLE of ξ .

$$X_{i} \sim N(\mu, \sigma^{2}), \ \mu \sim N(a, b), \ \sigma^{2} \text{ is known under SEL, } \Pi_{\theta|\xi} = N(0, \sigma_{0}^{2}), \text{ with } \xi = \sigma_{0}^{2}$$
$$P_{\xi} = \int_{\mathbb{R}} f(x_{1:n}|\mu) \pi(\mu|\sigma_{0}^{2}) d\mu \cdots l(\sigma_{0}^{2}) \propto (n\sigma_{0}^{2} + \sigma^{2})^{-1/2} exp\{-\frac{n\bar{x}^{2}}{2(n\sigma^{2} + \sigma^{2})}\}$$

MLE of σ_0^2 is $\hat{\sigma}_0^2 = \max\{0, \bar{x} - \sigma^2/n\}.$

Hierarchical Bayes: put a prior on hyperparameter.

Computation issues: we need $\mathbb{E}_p(\tau)$ where the expectation is w.r.t. posterior $p(\theta)$ MCMC: \cdot Generate iid $\theta^{1:m}$ from a pdf $h(\theta) > 0$ w.r.t ν

· By SLLN, as
$$m \to \infty$$
, $\hat{\mathbb{E}}_p(\tau) = \frac{1}{m} \sum_j \frac{\tau(\theta^j) p(\theta^j)}{h(\theta^j)} \to_{a.s.} \int \frac{\tau(\theta) p(\theta)}{h(\theta)} = \mathbb{E}_p(\tau).$

Minimax Rule

Definition: $T_* = \arg \inf_T sup_{\theta \in \Theta} R_T(\theta)$

Control the worst case, but maybe not that good in other case.

Find a Minimax Rule: Let $\Theta_0 \subset \Theta$, and T is minimax of $\tau(\theta)$ when $\theta \in \Theta_0$. If $\sup_{\theta \in \Theta} R_T(\theta) = \sup_{\theta \in \Theta_0} R_T(\theta)$, T is minimax on Θ . Proof: By def. $\forall T_0 \neq T : \sup_{\theta \in \Theta} R_T(\theta) = \sup_{\theta \in \Theta_0} R_T(\theta) \leq \sup_{\theta \in \Theta} R_{T_0}(\theta) \leq \sup_{\theta \in \Theta} R_{T_0}(\theta) \square$

Similarly, if T is unique minimax on Θ_0 also unique on Θ Minimaxity of a Bayes rule: Let Π be a proper prior on Θ and T be a Bayes rule of $\tau(\theta)$ w.r.t. Π . If $R_T(\theta) \leq \int R_T(\theta) d\Pi = r_T(\Pi), \forall \theta \in \Theta$. i.e. T has constant risk function or bounded by Bayes risk. Then: (1) T is minimax

(2) If in addition T is the unique Bayes rule, it's also unique Minimax rule.

(c) If in addition T is the unique barge fuel, its also under the matrix rule, Proof: Let δ be any other rule $\sup_{\theta} R_{\delta}(\theta) \ge \int R_{\delta}(\theta) d\Pi \ge \int R_{T}(\theta) d\Pi \ge \sup_{\theta} R_{T}(\theta)$ The last \ge comes from " $\forall \theta \in \Theta$ ". If unique, second \ge is >, i.e. unique minimax \square Corollary: Let Π be a proper prior on Θ and T be a Bayes rule of $\tau(\theta)$ w.r.t. Π . If

 $\exists \Theta_0 \text{ s.t. } R_T(\theta) \text{ is constant on } \Theta_0 \text{ which equals to } sup_{\theta \in \Theta} R_T(\theta), \text{ then,}$ $\cdot \text{ If } \Pi(\Theta_0) = 1, T \text{ is minimax;}$ $\cdot \text{ If in addition } T \text{ is the unique Bayes rule w.r.t.}$

I, it is also the unique minimax, Θ_0 (proved above) \Rightarrow minimax on Θ_0 .

 $\Pi(\Theta_0) = 1 \Rightarrow T \text{ is minimax on } \Theta_0 \text{ (proved above)} \Rightarrow \min(\alpha, \beta) \text{ is minimax on } \Theta.$ Ex: $X_i \sim Bernoulli(p)$ estimate p under SEL, with prior $p \sim Beta(\alpha, \beta)$:

$$p|x \sim Beta(\alpha + \sum_{\alpha + \sum_{\alpha + \beta + \sum_{\alpha + \beta + \sum_{\alpha + \sum_{\alpha$$

$$R_T(p) = \frac{np(1-p)+(\alpha-p\alpha-p\beta)^2}{(\alpha+\beta+n)^2}.$$
 Let $\alpha = \beta = \sqrt{n}/2, R_T(p) = 1/[4(1+\sqrt{n})^2]$ is constant $\rightarrow T = \sqrt{nX+1/2}$ is the unique minimum estimator

constant. $\Rightarrow T = \frac{\sqrt{n} (1/2)}{\sqrt{n+1}}$ is the unique minimax estimator.

Remark: Minimax estimators are irrelevant with prior, but depends on loss function. Limit of Bayes rules: Let $\Pi_j j = 1, 2, \cdots$ be a seq. of priors and r_j be the Bayes risk of a Bayes rule of $\tau(\theta)$ w.r.t. Π_j . If for a rule T with $sup_{\theta}R_T(\theta) < \infty$, $\liminf_{j \to \infty} R_T(\theta)$, then T is minimax.

Corollary: Let $\prod_j j = 1, 2, \cdots$ be a seq. of priors and r_j be the Bayes risk of a Bayes rule of $\tau(\theta)$ w.r.t. \prod_j . If a rule T with constant risk function $R_T(\theta) = r < \infty$, and $\liminf_j r_j \ge r$, then T is minimax.

Ex: $X_i \sim N(\mu, \sigma^2), \ \theta = (\mu, \sigma^2)$ is unknown under SEL:

First consider
$$\Theta = \mathbb{R} \times \{0, c], \Theta_0 = \mathbb{R} \times \{c\}$$
. On $\Theta_0 : R_{\bar{X}} = \frac{c^2}{n} = r$ constant.
Recall: $\mu \sim N(0, j), r_j = \frac{c^2 j}{nj+c^2} \to r$. Hence, \bar{X} is minimax on $\Theta_0 \Rightarrow$ also on Θ

If $\Theta = \mathbb{R} \times (0, \infty)$ sup goes to ∞ , it's meaningless.

Hypothesis Testing

Sample $X_{1:n} \sim \tilde{P} \in \mathcal{P}$. Test: $H_0 : P \in \mathcal{P}_0$ v.s. $H_1 : P \in \mathcal{P}_1, \mathcal{P}_0 \subset \mathcal{P}, \mathcal{P}_1 = \mathcal{P} \setminus \mathcal{P}_0$

If \mathcal{P}_0 contains only 1 element, we call it simple null hypothesis; otherwise composite. Test is a statistic T(X) takes value in [0, 1]. When X = x is observed, we reject H_0

with probability T(x). If $T(X) \in \{0, 1\}$ a.s. \mathcal{P} , it's non-randomized.

Errors: Type I error $\mathbb{P}[reject H_0|H_0 \text{ is true}]$ i.e. $\mathbb{E}_0[T]$

Type II error $\mathbb{P}[accept H_0|H_1 \text{ is true}]$ i.e. $\mathbb{E}_1[1-T]$

Power function: $\beta_T(P) = \mathbb{E}_P[T(X)]$, it is a function of $P \in \mathcal{P}$

- Level α : $\sup_{P \in \mathcal{P}_0} \beta_T(P) \leq \alpha$ Size α : $\sup_{P \in \mathcal{P}_0} \beta_T(P) = \alpha$ Uniformly Most Powerful Test (UMP)
- Test T_* of size α is a UMP test iff $\beta_{T_*}(P) \geq \beta_T(P)$ for all $P \in \mathcal{P}_1$ and T of level α . If U(X) is a suff statistic for $P \in \mathcal{P}$, for any test T(X), E[T|U] is a test, with same power function as T. As $\mathbb{E}[E[T|U]] = \mathbb{E}[T] \forall P$. To find UMP, consider $\psi(U)$ only. Neyman-Pearson lemma: Let $\mathcal{P}_0 = \{P_0\}, \mathcal{P}_1 = \{P_1\}, f_j$ be the pdf of P_j

(i) (Existence). For every α , there exists a UMP test of size α , given by T_* , where

 $\gamma \in [0,1], c \ge 0$ is to be determined as $\mathbb{E}_0[T_*(X)] = \alpha$.

$$T_*(X) = \begin{cases} 1 & f_1(X) > cf_0(X) \\ \gamma & f_1(X) = cf_0(X) \\ 0 & f_1(X) < cf_0(X) \end{cases} \qquad T_{**}(X) = \begin{cases} 1 & f_1(X) > cf_0(X) \\ 0 & f_1(X) < cf_0(X) \end{cases}$$

(ii) (Uniqueness). If $T_{**}(X)$ is a UMP test of size α , then $\uparrow a.s.\mathcal{P}$

Can only differ on $B = \{x : f_1(x) = cf_0(x)\}$. T_* is the simplest form of randomized. Remarks: Both null and alternative are simple

· UMP exists, and unique except on B · If $\nu(B) = 0 \Rightarrow$ unique UMP

 $\text{ If } \nu(B) > 0 \Rightarrow \text{Random, but can be constant } \gamma \text{ on } B; \quad \cdot \lambda = \frac{f_1(X)}{f_0(X)} \text{ is suff.}$

Proof: Assume $\alpha \in (0, 1)$.

(1) γ, c exist: $\mathbb{E}_0 T_* = \mathbb{P}_0[f_1(X) > cf_0(X)] + \gamma \mathbb{P}_0[f_1(X) = cf_0(X)].$ Let $\gamma(t) = \mathbb{P}_0[f_1(X) > tf_0(X)]$ it is non-increasing with $\gamma(0) = 1, \gamma(\infty) = 0$. Thus $\exists c \in (0,\infty)$ s.t. $\gamma(c) \leq \alpha \leq \gamma(c-)$. Set $\gamma = \frac{\alpha - \gamma(c)}{\gamma(c-) - \gamma(c)} I_{(\gamma(c-) \neq \gamma(c))}$. Note that $\gamma(c-) - \gamma(c) = \mathbb{P}_0[f_1(X) = cf_0(X)].$ Such γ, c satisfy. (2) T_* is UMP: another T s.t. $\mathbb{E}_0 T \leq \alpha$: As $T_* > T \Rightarrow T_* > 0, f_1(X) \geq c f_0(X),$ and $T_* < T \Rightarrow T_* < 1, f_1(X) < cf_0(X)$, there is $[T_* - T][f_1(X) - cf_0(X)] > 0$ $\int [T_* - T] f_1 d\nu = \beta_{T_*}(1) - \beta_T(1) \ge c \int [T_* - T] f_0 d\nu = c [\beta_{T_*}(0) - \beta_T(0)] \ge 0$ (3) Uniqueness: Define $A = \{x : f_1(x) \neq cf_0(x)\}$. Similarly $[T_* - T][f_1(X) - f_1(X)]$ $cf_0(X) > 0$ when $X \in A$, $[\cdot] = 0$ when $X \notin A$. As both UMP test with size α : $\int [T_* - T] [f_1(X) - cf_0(X)] d\nu = \beta_{T_*}(1) - \beta_T(1) - c[\beta_{T_*}(0) - \beta_T(0)] = 0.$ $\Rightarrow \nu(A) = 0 \Rightarrow T_* \neq T_{**}$ only on B Procedure: $\lambda = f_1(X)/f_0(X) \to \text{if } \lambda \text{ monotone in } U(X) \to U < d \text{ or } U > d \text{ instead.}$ Ex: X is a sample of size 1, $P_0 = N(0, 1)$, P_1 : $e^{-|x|/2}/4$. UMP test of level $\alpha < 1/3$: $\lambda(X) = \sqrt{\frac{\pi}{8}} exp\{\frac{x^2 - |x|}{2}\} \text{ monotone in } (|x| - \frac{1}{2})^2 \text{ As it is continuous, } \nu(B) = 0.$ Then $\lambda > c \Leftrightarrow |x| > \tilde{t} \text{ or } |x| < 1 - t.$ Ex: $X_i \sim Bernoulli(p), H_0: p = p_0 v.s. H_1: p = p_1$, where $0 < p_0 < p_1 < 1$: $f(x_{1:n;p}) = p^{\sum x} (1-p)^{n-\sum x}$ Let $Y = \sum X$, $\lambda = (\frac{p_1}{p_0})^Y (\frac{1-p_1}{1-p_0})^{n-Y}$ increase in Y. Find γ, m s.t. $\alpha = \mathbb{P}_0[Y > m] + \gamma \mathbb{P}_0[Y = m]$

Remark: T_* relies on p_0 only, not on p_1 .

· For any $p_1 > p_0$, the test T_* has level α , and it is a UMP test for $H_1: p = p_1$

• Therefore T_* is a UMP test for testing $H_0: p = p_0 v.s.$ $H_1: p > p_0$ Lemma: Suppose that there is a test T_* of size α s.t. for every $P_1 \in \mathcal{P}_1$, T_* is UMP for testing H_0 versus the hypothesis $P = P_1$. Then T_* is UMP for testing $H_0 v.s.$ H_1 . Extend to a family: \downarrow satisfy this.

- Monotone Likelihood Ratio Family: Suppose $X \sim P_{\theta}$ with $\theta \in \Theta$. Suppose that $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ is dominated by a measure ν , with PDF $f_{\theta} = dP_{\theta}/d\nu$. For a statistic Y(X), \mathcal{P} has monotone likelihood ratio in Y(X) iff, for any $\theta_1 < \theta_2$: On $supp(f_{\theta_1}) \cup supp(f_{\theta_2})$, $f_{\theta_2}(x)/f_{\theta_1}(x)$ is a non-decreasing function of Y(x).
- Remark: When monotone in \hat{Y} , UMP given by NP-Lemma, can be defined by $\hat{Y} > d$ and the calculation is based on θ_1 , doesn't depends on θ_2 .

Lemma: Suppose $X \sim P_{\theta}$ with $\theta \in \Theta$, and \mathcal{P} has monotone likelihood ratio in Y(X). If ψ is a non-dec. function of Y, then $g(\theta) = \mathbb{E}[\psi(Y)]$ is a non-dec. function of θ . Proof: Let $\theta_1 < \theta_2$, $h(y(x)) = f_{\theta_2}(x)/f_{\theta_1}(x)$, Let $A = \{x : f_{\theta_1}(x) > f_{\theta_2}(x)\} = \{x : h(y(x)) < 1\}$, $B = \{x : f_{\theta_1}(x) < f_{\theta_2}(x)\} = \{x : h(y(x)) > 1\}$. Since h(y) is non-decreasing in $y, a = \sup_{x \in A} \psi(Y(x)) \le b = \inf_{x \in B} \psi(Y(x))$. $g(\theta_2) - g(\theta_1)$ is $\int \psi(Y(x))(f_{\theta_2}(x) - f_{\theta_1}(x))d\nu \ge a \int_A (f_{\theta_2}(x) - f_{\theta_1}(x))d\nu + b \int_B (f_{\theta_2}(x) - f_{\theta_1}(x))d\nu = (b - a) \int_B (f_{\theta_2}(x) - f_{\theta_1}(x))d\nu \ge 0$, as $\int_A (f_{\theta_2}(x) - f_{\theta_1}(x))d\nu + \int_B (f_{\theta_2}(x) - f_{\theta_1}(x))d\nu = 0$.

Ex: Let $\theta \in \Theta \subset \mathbb{R}$, $\eta(\theta)$ non-decreasing function of θ . Then the one-parameter exponential family with $f_{\theta}(x) = exp\{\eta(\theta)T(x) - A(\theta)\}h(x)$ has monotone likelihood ratio in T(X).

Ex: $X_i \sim Uni(0, \theta)$ where $\theta > 0$ PDF of $X_{1:n}$ is $f_{\theta}(x) = \theta^{-n} I_{(0,\theta)}(x_{(n)})$, for $\theta_1 < \theta_2$, only need to consider $(0, \theta_1) \cup (0, \theta_2) = (0, \theta_2) f_{\theta_2}(x) / f_{\theta_1}(x)$ is non-dec. in $x_{(n)}$. Theorem: UMP of Monotone Likelihood Ratio Family:

Suppose $X \sim P_{\theta}$ with $\theta \in \Theta$, and \mathcal{P} has monotone likelihood ratio in Y(X). Consider the testing $H_0: \theta \leq \theta_0 v.s. H_1: \theta > \theta_0$, where θ_0 is a given constant.

 $\int 1 \quad Y(X) > c$

(1) There exists a UMP test of size α , which is given by $T_*(X) = \begin{cases} \gamma & Y(X) = c \ c \\ 0 & Y(X) < c \end{cases}$

and γ are from $\beta_{T_*}(\theta_0) = \alpha$, and $\beta_T(\theta) = \mathbb{E}_{\theta}T$ is the power function of a test T. (2) $\beta_{T_*}(\theta)$ is strictly increasing for all θ 's for which $0 < \beta_{T_*}(\theta) < 1$. (3) For any $\theta < \theta_0$, T_* minimizes $\beta_T(\theta)$ (type I error of T) among T s.t. $\beta_T(\theta_0) = \alpha$.

(4) For any fixed θ_1 , T_* is UMP for $H_0: \theta \leq \theta_1$ v.s. $H_1: \theta > \theta_1$, with size $\beta_T(\theta_1)$. (5) Assume that $\mathbb{P}_{\theta}[f_{\theta}(X) = cf_{\theta_0}(X)] = 0$, for any $\theta > \theta_0$ and $c \geq 0$. If T is a test with $\beta_T(\theta_0) = \beta_{T_0}(\theta_0)$, then for $\forall \theta > \theta_0$ either $\beta_T(\theta) < \beta_{T_0}(\theta)$ or $T = T_*a.s.\mathcal{P}$ Remark: \cdot optimal: $\theta < \theta_0$ minimize Type I; $\theta > \theta_0$ minimize Type II

· Uniqueness: When $\mathbb{P}_{\theta}[f_{\theta}(X) = cf_{\theta_0(X)}] = 0$ holds for any $\theta < \theta_0$ and c > 0, and the power at $\theta = \theta_0$ are equal.

Proof: (1) T_* is UMP for $H_0: \theta = \theta_0 \ v.s. \ H_1: \theta > \theta_0$ from Lemma above, and β_{T_*} is non-decreasing in θ as T_* is non-decreasing in Y (Another Lemma). $\Rightarrow T_*$ is size α on $\{\theta \leq \theta_0\}$. Meanwhile any level α , T, for $H_0: \theta \leq \theta_0 \ v.s. \ H_1: \theta > \theta_0$ is also level α , T, for $H_0: \theta = \theta_0 \ v.s. \ H_1: \theta > \theta_0$. As T_* UMP in the " = " test \Rightarrow more powerful on $\Theta_1 \Rightarrow$ also UMP of the " \leq " test.

(3)The result can be proved using Neyman-Pearson lemma with all inequalities reversed.

(4) Similar to (1)

(5)

Ex $X_i \sim Ubif(0,\theta) \ \theta > 0$. Testing $H_0: \theta \leq \theta_0 \ v.s. \ H_1: \theta > \theta_0$ $Y = X_{(n)}$, monotone likelihood ratio, UMP is $T_*, \ \alpha = \beta_{T_*}(\theta_0) = \frac{n}{\theta_*} \int_c^{\theta_0} x^{n-1} dx = \theta_0$

 $1 - c^n \theta_0^{-n} \Rightarrow c = \theta_0 (1 - \alpha)^{1/n}$. For $\theta > \theta_0$, $\beta_{T_*}(\theta) = 1 - \theta_0^n \theta^{-n} (1 - \alpha)$. Another test $T = \alpha I_{(X_{(n)}) \le \theta_0} + I_{(X_{(n)}) \ge \theta_0}$. Same power function when $\theta > \theta_0$.

As in this case $\mathbb{P}\{f_{\theta_1} = f_{\theta_0}\} = 1$, is not contradictory with the unique lemma. One Parameter Exponential Family:

 $f_{\theta}(x) = exp\{\eta(\theta)T(x) - A(\theta)\}h(x), \eta$ is strictly monotone function of θ . · If η is increasing, then T_* given by Monotone Likelihood Ratio Theorem is UMP

for testing $H_0: \theta \leq \theta_0 \ v.s. \ H_1: \theta > \theta_0$. If η is decreasing or test is $H_0: \theta \geq \theta_0 \ v.s. \ H_1: \theta < \theta_0$ the result is still valid

by reversing inequalities in definition of T_* . Ex: $X_i \sim N(\mu, \sigma^2), \ \mu \in \mathbb{R}$ unknown, σ^2 is known. $H_0: \mu \leq \mu_0 \ v.s. \ H_1: \mu > \mu_0:$ $Y = \bar{X}, \ \eta = \frac{n\mu}{\sigma^2} \Rightarrow T_* = I_{(\bar{X} > C_{\alpha})} \Rightarrow C_{\alpha} = \sigma Z_{1-\alpha}/\sqrt{n} + \mu_0$, where $Z_{\alpha} = \Phi^{-1}(\alpha)$.

 $I = X, \ \eta = \frac{1}{\sigma^2} \Rightarrow I_* = I(\bar{X} > C_\alpha) \Rightarrow C_\alpha = \delta Z_{1-\alpha}/\sqrt{n} + \mu_0, \text{ where } Z_\alpha = \Psi \quad (\alpha).$ • Discuss: dist of Y is needed. If it is continuous the test is non-randomized.

Ex: $X_i \sim Poisson(\theta)$ with unknown $\theta > 0$, $H_0: \theta \le \theta_0 v.s. H_1: \theta > \theta_0$:

$$Y = \sum X \sim Poisson(n\theta), \ \eta = \log \theta \nearrow \alpha = \sum_{j=c+1}^{\infty} \frac{e^{n\theta_0} (n\theta_0)^j}{j!} + \gamma \frac{e^{n\theta_0} (n\theta_0)^c}{c!}, \text{ if } \alpha = \sum_{j=c+1}^{\infty} \frac{e^{n\theta_0} (n\theta_0)^j}{j!} + \gamma \frac{e^{n\theta_0} (n\theta_0)^c}{c!}, \text{ if } \alpha = \sum_{j=c+1}^{\infty} \frac{e^{n\theta_0} (n\theta_0)^j}{j!} + \gamma \frac{e^{n\theta_0} (n\theta_0)^c}{c!}, \text{ if } \alpha = \sum_{j=c+1}^{\infty} \frac{e^{n\theta_0} (n\theta_0)^j}{j!} + \gamma \frac{e^{n\theta_0} (n\theta_0)^j}{c!} + \gamma \frac{e^{n\theta_0} (n\theta_0)^c}{c!}, \text{ if } \alpha = \sum_{j=c+1}^{\infty} \frac{e^{n\theta_0} (n\theta_0)^j}{j!} + \gamma \frac{e^{n\theta_0} (n\theta_0)^c}{c!}, \text{ if } \alpha = \sum_{j=c+1}^{\infty} \frac{e^{n\theta_0} (n\theta_0)^j}{j!} + \gamma \frac{e^{n\theta_0} (n\theta_0)^c}{c!} + \gamma \frac{e^{n\theta_0} (n\theta_0)^c}{c!} + \gamma \frac{e^{n\theta_0} (n\theta_0)^c}{c!} + \gamma \frac{e^{n\theta_0} (n\theta_0)^j}{c!} + \gamma \frac{e^{n\theta_0} (n\theta_0)^c}{c!} + \gamma \frac{e^{n\theta_0} (n\theta_0)^c}$$

 $\alpha = \sum_{j=c+1}^{\infty} [e^{ic_0} (n\theta_0)^j / j!] \text{ for some integer } c \text{ it is non-randomized.}$

Two Sided Tests: For fixed θ_0 , $\theta_1 < \theta_2$: (1) $H_0: \theta \leq \theta_1$ or $\theta \geq \theta_2$ v.s. $H_1: \theta_1 < \theta < \theta_2$ UMP in 1-para exp. (2) $H_0: \theta_1 \leq \theta \leq \theta_2$ v.s. $H_1: \theta > \theta_1$ or $\theta < \theta_2$ Only UMPU (3) $H_0: \theta = \theta_0$ v.s. $H_1: \theta \neq \theta_0$ Only UMPU

Generalized Neyman-Pearson lemma: Define the class of tests:

Let f_1, \dots, f_{m+1} be measurable on $(\mathbb{R}^p, \mathcal{B})$ and also integrable w.r.t a measure ν . For given constants t_1, \dots, t_m let \mathcal{T} be the class of measurable functions $\phi : \mathbb{R}^p \to [0, 1]$ satisfying $\int \phi f_i d\nu \leq t_i$, $i = 1, \dots, m$, and \mathcal{T}_0 be the set of ϕ 's in \mathcal{T} satisfying the condition with all inequalities replaced by equalities.

Generalized Neyman-Pearson lemma: Result:

If there are constants c_1, \cdots, c_m s.t.

 $\phi_*(x) = \begin{cases} 1 & f_{m+1}(x) > c_1 f_1(x) + \dots + c_m f_m(x) \\ 0 & f_{m+1}(x) < c_1 f_1(x) + \dots + c_m f_m(x) \end{cases}$

is a member of \mathcal{T}_0 , then ϕ_* maximizes $\int \phi f_{m+1} d\nu$ over $\psi \in \mathcal{T}_0$. If $c_i \ge 0$ for all i, ϕ_* maximizes $\int \phi f_{m+1} d\nu$ over $\psi \in \mathcal{T}$

Lemma: f_1, \dots, f_{m+1} and ν given by the generalized Neyman-Pearson lemma. Then the set $M = \{(\int \phi f_1 d\nu, \dots, \int \phi f_m d\nu) : \phi : \mathbb{R}^p \to [0, 1]\}$ is convex and closed. If t_1, \dots, t_m is an interior point of M, then there exist constants c_1, \dots, c_m s.t. the function $\phi_*(x)$ defined in the generalized Neyman-Pearson lemma is in \mathcal{T}_0 . Proof: Suppose $\phi_* \in \mathcal{T}_0, \forall \phi \in \mathcal{T}_0$ $(\phi_* - \phi)(f_{m+1} - \sum c_i f_i) \ge 0$

Therefore $\int (\phi_* - \phi)(f_{m+1} - \sum c_i f_i) d\nu \ge 0 \Rightarrow \int (\phi_* - \phi)f_{m+1} d\nu \ge c_i \int (\phi_* - \phi)f_i d\nu$. Hence, ϕ_* maximizes $\int \phi f_{m+1} d\nu$ over $\psi \in \mathcal{T}_0$, If $c_i > 0$ the first line still holds. UMP Tests for Two-Sided Hypothesis:

 $X \sim f_{\theta}(x) = exp\{\eta(\theta)T(x) - A(\theta)\}h(x),$ 1-parameter exp. family.

(a) For hypothesis (1), a size α UMP is given as following, where c_i, γ_i are s.t. $\alpha = \beta_{T_*}(\theta_1) = \beta_{T_*}(\theta_2)$

(b) T_* minimizes $\beta_T(\theta)$ over $\theta < \theta_1, \theta > \theta_2$ and T s.t. $\alpha = \beta_T(\theta_1) = \beta_T(\theta_2)$ (c) If T_* and T_{**} are two tests given by (a), $\beta_{T_*}(\theta_1) = \beta_{T_{**}}(\theta_1)$, and if the region $\{T_{**}=1\}$ is to the right of $\{T_*=1\}$, then $\beta_{T_*}(\theta) < \beta_{T_{**}}(\theta)$ for $\theta > \Theta_1$ and $\beta_{T_*}(\theta) > \beta_{T_{**}}(\theta)$ for $\theta < \Theta_1$. If both T_* and T_{**} satisfy (a) and have power α at $\theta = \theta_1, \theta_2$, then $T_* = T_{**}a.s.P.$

Proof: (a) generalized Neyman-Pearson Lemma above. Start from H_0 : θ = θ_1, θ_2 v.s. $H_1: \theta = \theta_3$, where $\theta_1 < \theta_3 < \theta_2$. $(\beta_t(\theta_1), \beta_t(\theta_1))$ is interior point. $\Rightarrow \tilde{c_1}, \tilde{c_2} \cdots T_*$ based on Y doesn't depends on $\theta_3 \Rightarrow$ From 3 points \rightarrow testing (1). (b) Consider $\theta_3 < \theta_1$ similar with above. And $\theta_3 > \theta_2 \cdots$

Uniformly Most Powerful Unbiased (UMPU) Tests:

Given α . Test T for $H_0: P \in \mathcal{P}_0$ v.s. $H_1: P \in \mathcal{P}_1$ is unbiased of level α iff $\beta_T(P) < \alpha, P \in \mathcal{P}_0 \text{ and } \beta_T(P) > \alpha, P \in \mathcal{P}_1$

A test of size α is UMPU iff it is UMP among the unbiased tests of level α . Similarity: hypothesis: $H_0: \theta \in \Theta_0$ v.s. $H_1: \theta \in \Theta_1$. Let α be a given level of significance, and $\bar{\Theta}_{01}$ be the common boundary of Θ_0 and Θ_1 . i.e. common limit points of Θ_0 and Θ_1 .

A test T is similar on $\bar{\Theta}_{01}$ if and only if $\beta_T(\theta) = \alpha$ for all $\theta \in \bar{\Theta}_{01}$.

Remark: \cdot Transform P to θ to make it easier to find the boundary; · Unbiased are usually similar. Work with similar tests are much easier.

Continuity of the power function: $\beta_T(\theta)$ is continuous in θ iff $\forall \{\theta_i\}_{i=1}^{\infty} \subset \Theta, \ \theta_i \to \theta$ implies $\beta_T(\theta_i) \to \beta_T(\theta)$, where $P_i \in \mathcal{P}$ and $\theta_i = \theta(P_i)$.

If parametric, β_T is just a function of θ , the continuous is just that of $\beta_T(\theta)$.

- Lemma: Hypothesis: $H_0: \theta \in \Theta_0 v.s. H_1: \theta \in \Theta_1$ Suppose that, for every T, $\beta_T(P)$ is continuous in θ . If T_* is uniformly most powerful among all similar tests and has size α , then T_* is a UMPU test.
- Proof: continuous: $\{unbiased\} \subset \{similar\}, T_*$ is size α and more powerful than fixed test $T = \alpha \Rightarrow T_*$ unbiased and UMP in a larger set \Rightarrow UMPU
- Nevman structure: Let U(X) be a suff statistic for the boundary $\overline{\mathcal{P}} = \{P : \theta \in \overline{\Theta}_{01}\}$ and let \bar{P}_{II} be the distribution of U for $P \in \bar{P}$. Test T is said to have Neyman structure w.r.t. U if $\mathbb{E}[T|U] = \alpha$, a.s. $\overline{\mathcal{P}}$.
- If T has Neyman structure, $\mathbb{E}T = \mathbb{E}[\mathbb{E}(T|U)] = \alpha \ \forall P \in \overline{P} \Rightarrow T$ is similar on $\overline{\Theta}_{01}$. · If all tests similar on $\overline{\Theta}_{01}$ have Neyman structure w.r.t. U, then working with tests having Neyman structure is the same as working with tests similar on $\overline{\Theta}_{01}$. Lemma 6.6: Let U(X) be a sufficient and complete statistic for $P \in \overline{\mathcal{P}}$, then all tests similar on $\overline{\Theta}_{01}$ have Neyman structure w.r.t. U.

Theorem: UMPU tests in exponential families:

In Exp family with PDF $f_{\theta,\phi}(x) = exp\{\theta Y(x) + \phi^T U(x) - \zeta(\theta,\phi)\}$

 θ is real valued, ϕ can be a vector, $Y \in \mathbb{R}$ and vector U are statistics.

(1) For test $H_0: \theta \leq \theta_0 v.s. H_1: \theta > \theta_0$ a UMPU test of size α is given as:

$$T_*(Y,U) = \begin{cases} 1 & Y > c(U) & \text{where } c(u) \text{ and } \gamma(u) \text{ are Borel functions} \\ \gamma(U) & Y = c(U) & \text{s.t } \mathbb{E}_{\theta_0}[T_*|U=u] = \alpha \text{ for each } u \\ 0 & Y < c(U) \end{cases}$$

(2) For test $H_0: \theta \leq \theta_1$ or $\theta_0 \geq \theta_2$ v.s. $H_1: \theta_1 < \theta < \theta_2$ a UMPU test of size α is given as:

$$T_*(Y,U) = \begin{cases} 1 & c_1(U) < Y < c_2(U) \text{where } c(u) \text{ and } \gamma(u) \text{ are Borel functions} \\ \gamma_i(U) & Y = c_i(U) & \text{s.t } \mathbb{E}_{\theta_1}[T_*|U = u] = \mathbb{E}_{\theta_2}[T_*|U = u] = \alpha \\ 0 & otherwise & \text{for each } u \end{cases}$$

(3) For test $H_0: \theta_1 \leq \theta \leq \theta_2$ v.s. $H_1: \theta < \theta_1$ or $\theta > \theta_2$ a UMPU test of size α is given as:

$$T_*(Y,U) = \begin{cases} 1 & otherwise & \text{where } c(u) \text{ and } \gamma(u) \text{ are Borel functions} \\ \gamma_i(U) & Y = c_i(U) & \text{s.t } \mathbb{E}_{\theta_1}[T_*|U = u] = \mathbb{E}_{\theta_2}[T_*|U = u] = \alpha \\ 0 & c_{1(U)} < Y < c_{2(U)} \text{for each } u \end{cases}$$

(4) For test $H_0: \theta = \theta_0 v.s. H_1: \theta \neq \theta_0$ a UMPU test of size α is given as that in (3), but with $\mathbb{E}_{\theta_0}[T_*|U=u] = \alpha$ and $\mathbb{E}_{\theta_0}[T_*Y|U=u] = \alpha \mathbb{E}_{\theta_0}[Y|U=u]$ for each u. Remark: This result only for Exp family, and no Uniqueness is assured.

Proof: Given $U = u, Y \sim f()$ is 1-parameter. in (1)-(4) find $\overline{\Theta}_{01}$, and U comp & suff on it \Rightarrow Neyman structure \Rightarrow UMP among them \Leftrightarrow UMP among similar \Rightarrow UMPU Ex1 Poisson: $X_1 \sim P(\lambda_1), X_2 \sim P(\lambda_2)$, rewrite the density as:

 $p = \frac{exp\{-(\lambda_1 + \lambda_2)\}}{x_1! x_2!} exp\{x_2 \log \frac{\lambda_2}{\lambda_1} + (x_1 + x_2) \log \lambda_1\}, \text{ and let } \theta = \log \frac{\lambda_2}{\lambda_1} Y = X_2$ Test H_0 : $\lambda_1 = \lambda_2 v.s.$ H_1 : $\lambda_1 \neq \lambda_2 \Leftrightarrow H_0$: $\theta = 0 v.s.$ H_1 : $\theta \neq 0$, with $U = X_1 + X_2, \phi = \log \lambda_1$ Find a UMPU: $\mathbb{P}[Y = y | U = u] = {\binom{u}{y}} p^y (1-p)^{u-y}$ where

 $p = \frac{e^{\theta}}{1+e^{\theta}}$ on the boundary $\theta = 0$ dist. of Y is known. We can find the UMPU.

Ex2: Binomial: $X_1 \perp X_2$, $X_i \sim Binomial(n_i, p_i)$, n_1, n_2 are known, p_1, p_2 not. PMF is $\binom{n_1}{n_1}\binom{n_2}{n_2}(1-p_1)^{n_1}(1-p_2)^{n_2}exp\{x_2\log\frac{p_2(1-p_1)}{n_1(1-p_2)}+(x_1+x_2)\log\frac{p_1}{n_1(1-p_2)}\}$

Hence, $\theta = \frac{p_2(1-p_1)}{p_1(1-p_2)}$, $Y + X_2$, $U = X_1 + X_2$. Transform the test into θ UMPU can Pivotal Quantity: If the dist. of $R(X, \theta)$ does not depend on θ , then it is a pivotal. be found

Remark: UMP and UMPU are very good, but may not exist is some cases. \Rightarrow Find some test not bad and always exist.

Likelihood Ratio Test: Let $L(\theta) = f_{\theta}(X)$ be the likelihood function. The likelihood ratio is defined as $\lambda(X) = \sup_{\theta \in \Theta_0} L(\theta) / \sup_{\theta \in \Theta} L(\theta)$, where X is the sample with some size n. For test $H_0: \theta \in \Theta_0$ v.s. $H_1: \theta \in \Theta_1$

Likelihood ratio (LR) test is any test that rejects H_0 iff $\lambda(X) < c$, where $c \in [0, 1]$. Remark: If $\lambda(X)$ is well defined, then $\lambda(X) \leq 1$, and tends to 1 if H_0 is true;

· Let $\hat{\theta}$ be the MLE of θ , and $\hat{\theta}_0$ be MLE on Θ_0 . Then $\lambda(X) = L(\hat{\theta}_0)/L(\hat{\theta})$;

· For given α if $\exists c_{\alpha}$ s.t. $\sup_{\theta \in \Theta_0} \mathbb{P}_{\theta}[\lambda(X) < c_{\alpha}] = \alpha$, size α test can be defined. Properties: When a UMP or UMPU test exists, an LR test is often the same.

Suppose that X is in a 1-parameter exp family: $f_{\theta}(x) = \exp\{\eta(\theta)Y(x) - A(\theta)\}h(x),$ where η is a strictly increasing and differentiable function of θ .

- (1) For test $H_0: \theta < \theta_0 v.s.$ $H_1: \theta > \theta_0$ there is an LR test whose rejection region is the same as that of the UMP test.
- (2) For test $H_0: \theta \leq \theta_1$ or $\theta_0 \geq \theta_2$ v.s. $H_1: \theta_1 < \theta < \theta_2$ there is an LR test whose rejection region is the same as that of the UMP test.

(3) For testing the other two-sided hypotheses, there is an LR test whose rejection region is equivalent to $Y(X) < c_1$ or $Y(X) > c_2$ for some constants c_1 and c_2 . Proof: Prove (1) only. (2) and (3) are very similar.

Let $\hat{\theta}$ be be the MLE of $\theta \in \Theta$. Recall for exp family dist, $\frac{\partial}{\partial n} \log L(\theta) = Y(x) - B'(\eta)$, which is a strictly decreasing function shown before. Therefore, the MLE exists and is unique for η . Since η is strictly increasing of θ , so the MLE of θ exists and unique. And $L(\theta) \nearrow$ if $\theta < \hat{\theta}, L(\theta) \searrow$ if $\theta > \hat{\theta}$. Thus $\lambda = 1$ if $\hat{\theta} < \theta_0$ and $\lambda = L(\theta_0)/L(\hat{\theta})$ if $\hat{\theta} > \theta_0$. Then $\lambda < c$ is same as $\hat{\theta} > \theta_0$ and $L(\theta_0)/L(\hat{\theta}) < c$.

As $\hat{\eta}$ is s.t. $Y(X) = B'(\eta)$, with B' strictly $\nearrow \hat{\eta} \nearrow$ in $Y \Rightarrow \hat{\theta} \nearrow$ in Y

- Consequently, for any $\theta_0 \frac{d}{dV} [\log L(\hat{\theta}) \log L(\theta_0)] = \eta(\hat{\theta}) \eta(\theta_0)$. Thus,
- $\log [L(\theta_0)/L(\hat{\theta})] \nearrow$ in Y when $\hat{\theta} > \theta_0$, and \searrow when $\hat{\theta} < \theta_0$

Hence, for any $c \in (0,1)$ $\lambda < c \Leftrightarrow \hat{\theta} > \theta_0$ and $L(\theta_0)/L(\hat{\theta}) < c \Leftrightarrow Y > d$ Ex: $X_i \sim Uni(0 \theta), H_0: \theta = \theta_0 v.s. H_1: \theta \neq \theta_0: \lambda(X) = [X_{(n)}/\theta_0]^n I_{(X_{(n)} \leq \theta_0)}$

Reject when $\lambda < c \Leftrightarrow X_{(n)} > \theta_0$ or $X_{(n)} < c^{-n}\theta_0$. Take $c = \alpha$ it's size α .

Ex: Normal Linear Models: $X \sim N_n(Z\beta, \sigma^2 I_n)$. $H_0: L\beta = 0 \ v.s. \ H_1: L\beta \neq 0$: $\hat{\beta}_0$ is LSE under H_0 , $\hat{\sigma}_0^2 = \|X - Z\hat{\beta}_0\|^2/n$. $sup_{\theta \in \Theta_0} L(\theta) = (2\pi\hat{\sigma}_0^2)^{-n/2}e^{-n/2}$ LR test is $\lambda = [\hat{\sigma}^2/\hat{\sigma}_0^2]^{n/2} = (\frac{\|X-Z\hat{\beta}\|^2}{\|X-Z\hat{\beta}_0\|^2})^{n/2}$. Select c s.t. $sup_{\theta \in \Theta_0} \mathbb{P}_{\theta}[\lambda < c] \leq \alpha$

Especially, we consider a two-sample problem. $n = n_1 + n_2$, $\beta = (\mu_1, \mu_2)$ and

 $Z = diag(J_{n_1}, J_{n_2})$ with L = (1, -1) to test $\mu_1 = \mu_2$. $\lambda < c \Leftrightarrow |t| > c_0$:

 $t(X) = \{ (\bar{X}_1 - \bar{X}_2) / \sqrt{n_1^{-1} + n_2^{-1}} \} / \{ [(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2] / (n_1 + n_2 - 2) \}$ Regularity conditions: Let $X_{1:n}$ iid from a PDF f_{θ} with a measure ν where $\theta \in \Theta$ and Θ is an open set in \mathbb{R}^k . The regularity conditions below for the asymptotic of MLE will be assumed:

(1) $f_{\theta}(x)$ is twice continuously differentiable in θ and s.t.: $\frac{\partial}{\partial \theta} \int g_{\theta} d\nu = \int \frac{\partial}{\partial \theta} g_{\theta} d\nu$. for $q_{\theta} = f_{\theta}(x)$ and $\partial f_{\theta}(x) / \partial \theta$;

(2) The Fisher information matrix, $I_1(\theta)$, based on X_1 is positive definite;

(3) For any given $\theta \in \Theta$, there exists a positive number c_{θ} and a positive function $h_{\mathcal{A}}$ s.t. $\mathbb{E}h_{\mathcal{A}}(X_1) < \infty$ and sup $\|\frac{\partial^2 \log f_{\gamma}(x)}{\partial x}\| \le h_{\mathcal{A}}(x)$ for all x in the range

$$\frac{\gamma \cdot \|\gamma - \theta\| < c_{\theta}}{\gamma \cdot \|\gamma - \theta\| < c_{\theta}} = \frac{\partial \gamma \, \partial \gamma T}{\partial \gamma \, \partial \gamma T} = 100(1)$$

of X_1 , where $||A|| = \sqrt{tr(A^T A)}$ for any matrix A.

Thm: Asymptotic LRT: Regularity conditions \uparrow hold, Suppose that $H_0: \theta = q(\vartheta)$, where ϑ is a (k-r)-vector of unknown parameters and q is a continuously differentiable function from \mathbb{R}^{k-r} to \mathbb{R}^k with a full rank $\partial q(\vartheta)/\partial \vartheta$. Then, under H_0 : $-2\log \lambda_n \to^d \chi_r^2$: $r = dim(\theta) - dim(\vartheta)$, and reject $\lambda_n < exp\{-\frac{1}{2}\chi_r^2 \}$

Wald Test: $H_0: R(\theta) = 0$: $W_n = [R(\hat{\theta})]^T \{ [C(\hat{\theta})]^T [I_n(\hat{\theta})]^{-1} C(\hat{\theta}) \}^{-1} R(\hat{\theta}).$ Where $C(\theta) = \partial R(\theta) / \partial \theta$, I_n is the Fisher Inf. Matrix of $X_{1:n}$, and $\hat{\theta}$ is the MLE or RLE. Score Test: $R_n = [s_n(\tilde{\theta})]^T [I_n(\tilde{\theta})]^{-1} [s_n(\tilde{\theta})]$. Where $s_n(\theta) = \partial \log L(\theta) / \partial \theta$ is the score function, and $\tilde{\theta}$ is an MLE or RLE under $H_0: R(\theta) = 0$

Remark: They are asymptotically same, and reject when W, R is large. Thm 6.6: Under regularity conditions:

- (1) $R(\theta)$ continuously differentiable function from \mathbb{R}^k to \mathbb{R}^r , $W_n \to {}^d \chi_r^2$, reject when $W_n > \chi^2_{r,\alpha}$, where $\chi^2_{r,\alpha}$ is the $1 - \alpha$ quantile of χ^2_r .
- (2) Result for R_n is same with that of W_n above.
- Confidence Set: Let X be sample from a population $P \in \mathcal{P}$. Let $\theta = \theta(P)$ be the parameter of interest. Let C(X) be a random set determined by sample X. The random set C(X) is said to be a confidence set for θ with confidence level $1 - \alpha$, or a level $1 - \alpha$ confidence set, if $\inf_{P \in \mathcal{P}} P[\theta \in C(X)] \geq 1 - \alpha$. The exact infimum $\inf_{P \in \mathcal{P}} P[\theta \in C(X)]$ is called the confidence coefficient of C(X).
- If C(X) is of the form: $[\theta(X), \overline{\theta}X]$, it's confidence interval.
- $[\underline{\theta}(X), \infty)$, it's confidence lower bound. $(-\infty, \overline{\theta}X]$, it's confidence upper bound. Construct a Confidence Interval:

Thm: Pivotal Quantity: Suppose that $P \in \mathcal{P} = \{P_{\theta}\}$. Let T(X) be a realvalued statistic with CDF $F_{T,\theta}(t)$ and let α_1 and α_2 be fixed positive constants s.t. $\alpha_1 + \alpha_2 = \alpha < 1/2$.

(1) Suppose $F_{T,\theta}(t)$ and $F_{T,\theta}(t-)$ are non-increasing in θ for each fixed t. Define: $\bar{\theta} = \sup\{\theta: F_{T,\theta}(T) > \alpha_1\}, \text{ and } \theta = \inf\{\theta: F_{T,\theta}(T-) < 1-\alpha_2\}. \ [\theta(X), \bar{\theta}X] \text{ is }$ $1 - \alpha$ confidence interval

(2) Suppose $F_{T,\theta}(t)$ and $F_{T,\theta}(t-)$ are non-decreasing in θ for each fixed t. Result is $\bar{\theta} = \sup\{\theta : F_{T,\theta}(T) \leq 1 - \alpha_2\}$, and $\theta = \inf\{\theta : F_{T,\theta}(T) \geq \alpha_1\}$;

(3) If continuous, $F_{T,\theta}(T)$ is a pivotal quantity. Result is same.

Proof: (1): $\theta > \overline{\theta} \Rightarrow F_{T,\theta}(T) < \alpha_1, \ \theta < \theta \Rightarrow F_{T,\theta}(T) > 1 - \alpha_2. \ \mathbb{P}[\theta < \theta < \overline{\theta}] =$ $\begin{array}{l} 1 - \mathbb{P}[F_{T,\theta}(T) < \alpha_1] - \mathbb{P}[F_{T,\theta}(T) > 1 - \alpha_2] \geq 1 - \alpha_1 - \alpha_2 = 1 - \alpha_1 \\ \text{Ex:} \quad X_i \sim Poisson(\theta), \ T = \sum X \sim Poisson(n\theta) \text{ is comp and suff, and we can} \end{array}$

find $F_{T,\theta}(t) = \sum_{j=0}^{t} e^{-n\theta} (n\theta)^j / j! t = 0, 1, \cdots$, which is continuous in $\theta, \bar{\theta}$ is the unique root of $F_{T,\theta}(T) = \alpha_1$. As $F_{T,\theta}(T-) = F_{T,\theta}(T-1)$, $\underline{\theta}$ is the unique root of $F_{T,\theta}(T-1) = 1 - \alpha_2$ when T > 0 and $\theta = 0$ when T = 0. As $\frac{1}{\Gamma(t)} \int_{\lambda}^{\infty} X^{t-1} e^{-x} dx =$

 $\sum_{i=0}^{t-1} e^{-\lambda} \lambda^j / j!, \ \bar{\theta} = (2n)^{-1} \chi^2_{2(T+1),\alpha_1}, \ \underline{\theta} = (2n)^{-1} \chi^2_{2(T),1-\alpha_2}$

Inverting acceptance regions of tests: Consider testing problem $H_0: \theta = \theta_0 v.s.$ some H_1 T be a size α test, and the acceptance region is $A_T(\theta_0) = \{x : T(x) \neq 1\}$ For every $\theta \in \Theta$, $A_T(\theta)$ is a function from Θ to subsets of \mathcal{X} . "Inverse" $C(x) = \{\theta : x \in A_T(\theta)\}$. If all T_{θ} is level α , C(x) is level $1 - \alpha$ CI. The other direction: C(X) be level $1 - \alpha$ CI, $A(\theta_0) = \{x : \theta_0 \in C(X)\}$ is subset of

 \mathcal{X} . $T = 1 - T_{A(\theta_0)}(X)$ is a level α test for H_0 .

- Ex: 1-parameter exp family: $f_{\theta}(x) = \exp\{\eta(\theta)Y(x) A(\theta)\}h(x), \eta \nearrow$ strictly.
- Testing $H_0: \theta = \theta_0 v.s. H_1: \theta > \theta_0$ there is UMP T_* based on Y. accept set: $A(\theta_0) = \{x : Y(x) \leq c(\theta_0)\} c(\theta)$ non-dec. in θ can be shown. Then
- $C(x) = \{\theta : c(\theta) > Y(x)\}$ is a lower bound. If Y is continuous, conf. coef. is 1α .

· For testing $H_0: \theta = \theta_0 v.s. H_1: \theta < \theta_0$: Upper bound.

· For $H_0: \theta = \theta_0 v.s. H_1: \theta \neq \theta_0$: Confidence Interval.

Evaluation: Better test should have better CI, but hard to say which is better.

Length Criterion: Consider CI's of a real-valued θ with the same conf. coef. · The shorter the better · Uniformly shortest may not exists

· Find the best among a class of CI's.

Shortest CI for Pivotal: Consider real-valued parameter θ and statistic T(X)(1) Let U be a positive statistic s.t. $(T - \theta)/U$ is a pivotal with pdf f that is unimodal at x_0 . Consider CI's for θ : $\mathcal{C} = \{[T - bU, T - aU] : \int_a^b f dx = 1 - \alpha\}$. If $[T - b_*U, T - a_*U] \in \mathcal{C}$, with $f(a_*) = f(b_*) > 0, a_* < x_0 < b_*$, it's shortest in \mathcal{C} . (2) Suppose that T > 0, $\theta > 0$, T/θ is a pivotal with PDF f, and that $x^2 f(x)$ is unimodal at x_0 . Consider $\mathcal{C} = \{[T/b, T/a] : a, b > 0, \int_a^b f dx = 1 - \alpha\}$ If $[T/b_*, T/a_*] \in \mathcal{C}, a_*^2 f(a_*) = b_*^2 f(b_*) > 0, a_* < x_0 < b_*, \text{ it's shortest in } \mathcal{C}.$

· Unimodal: non-decreasing when $x < x_0$, non-increasing when $x > x_0$

Proof: (1) length of CI in C is (b-a)U. When $a < b, b-a < b_* - a_*$, if $a < a_*$:

 $a < b \leq a_*$ by unimodal: $\int_a^b f dx \leq f(a_*)(b-a) < \int_{a_*}^{b_*} f dx = 1 - \alpha$

 $a < a_* < b < b_*$ and $a > a_*$ is similar. (2) change x to 1/y can be proved Ex: $X_i \sim N(\mu, \sigma^2)$, if σ^2 unknown $\sqrt{n}(\bar{X} - \mu)/S \sim t_{n-1}$ is the pivotal; if σ^2 known $\sqrt{n}(\bar{X}-\mu)/\sigma \sim N(0,1)$. It is the shortest among that in C.

UMA CI: Let $\theta \in \Theta$ be unknown parameter, and $\Theta' \subset \Theta$ where true $\theta \notin \Theta$ C(X) with conf coef $1 - \alpha$ is Θ' -UMA iff for any other level $1 - \alpha$ set $C_1(X)$

 $\forall \theta' \in \Theta', \mathbb{P}[\theta' \in C(X)] \leq \mathbb{P}[\theta' \in C_1(X)].$ It is UMA iff $\Theta' = \{\theta\}^{\circ}$

Remark: Less prob. to cover false θ . For lower bound can use $\Theta' = \{\theta' \in \Theta : \theta' < \theta\}$

Thm UMA: C(X) be conf set for θ by inverting acceptance regions of non-randomized

- tests T_{θ_0} for $H_0: \theta = \theta_0 \ v.s. \ H_1: \theta \in \Theta_{\theta_0}$ where Θ_{θ_0} is a set related to θ_0 . If for each θ_0 , T_{θ_0} is UMP of size α , then C(X) is Θ' -UMA with conf coef $1 - \alpha$,
- where $\Theta' = \{\theta' : \theta \in \Theta_{\theta'}\}$ region of θ' that reject true θ .

· In 1-para exp fam with MLR, UMP exists hence UMA exists. Proof: Assume another level $1 - \alpha C_1(X)$ test $T_{1\theta_0}(X) = 1 - T_{A_1(\theta_0)}(X)$ is also level α . For non-randomized UMP $T: \mathbb{P}[\theta' \in C] = 1 - \mathbb{P}[T_{\theta'} = 1] \leq 1 - \mathbb{P}[T_{1\theta'} = 1]$ UMAU CI: Level $1 - \alpha$ conf set C(X) is Θ' -unbiased iff $\mathbb{P}[\theta'] \leq 1 - \alpha, \forall \theta' \in \Theta'$.

- · Let C(X) be a Θ' -unbiased conf set with conf coef $1-\alpha$ if for any other level $1-\alpha$ Θ' -unbiased set $C_1(X), \forall \theta' \in \Theta', \mathbb{P}[\theta' \in C(X)] \leq \mathbb{P}[\theta' \in C_1(X)],$ it is Θ' -UMAU $\cdot C(X)$ is UMAU iff $\Theta' = \{\theta\}^c$
- Thm UMAU CI: C(X) be confised for θ by inverting AR of non-randomized tests $T_{\theta_{\ell}}$ for $H_0: \theta = \theta_0 \ v.s. \ H_1: \theta \in \Theta_{\theta_0}$. If for each θ_0, T_{θ_0} is unbiased of size $\alpha, C(X)$ is Θ' -unbiased with conf coef $1 - \alpha$ where $\Theta' = \{\theta' : \theta \in \Theta_{\theta'}\}.$ If T_{θ_0} is also UMPU for each θ_0 , C(X) is Θ' -UMAU.

· Proof is similar to UMA. Unbiased: always smaller prob. to cover false θ' . Ex: Linear Model: $X \sim N(Z\beta, \sigma^2 T_n)$, with $\theta = a^T \beta$, with $a \in R(Z)$: Non-rand. test AR is $A(\theta_0) = \{x : a^T \hat{\beta} - \theta_0 > t_{n-r,\alpha} \sqrt{a^T (Z^T Z)^- a SSR/(n-r)}\}$ is size α UMPU for $H_0: \theta = \theta_0 v.s.$ $H_1: \theta < \theta_0$. Inverting it, there is a Θ' -UMAU upper bound with conf coef $1 - \alpha$, and $\Theta' = \{\theta' : \theta \in \Theta_{\theta'}\} = \{\theta' : \theta < \theta'\} = \{\theta, \infty\}$

The upper bound is $\bar{\theta} = a^T \hat{\beta} - t_{n-r,\alpha} \sqrt{a^T (Z^T Z)^- a SSR/(n-r)}$