Measure Theor (3) $A_{1}, A_{2}, \cdots \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_{i} \in \mathcal{F}$,解egative extended real-valued function on \mathcal{F} s.t. any disjointed sets $A_{1}, A_{2}, \cdots, \mu\left(\cup A_{i}\right)=\sum \mu\left(A_{i}\right) . \mu(\Omega)$ can be ∞. If $\mu(\Omega)=1$, esgue Measure: Consider $\Omega=\mathbb{R}, \mu=$ probability space. open intervals. $\mathcal{B}=\sigma(\mathcal{A})$ is called $\operatorname{Bo}(a, b):-\infty<a<b<+\infty\}$ i.e. collection length of the interval, which can be ∞. Counting Measure: Let Ω be a countable set, $\mathcal{F}=2^{\Omega}$, and for $A \in \mathcal{F}, \mu(A)=|A|$. Measure Function: s.t. $g(x)=\lim S_{n}(x)$, where $(1) S_{n}(x)$ takes finite number values $\left.\left.a_{i}\right\}_{i=1},(2) x: S_{n}(x)=a_{i}\right\} \in \mathcal{F},(x) S_{n}(x)$
Integration: $\int\left\{d \mu=\lim _{n} \sum_{i=1}^{n} a_{i} \mu\left(\left\{S_{n}(x)=a_{i}\right\}\right)\right.$. Dominated: If $\mu(A)=0 \Rightarrow \nu(A), \forall A$, we say $\nu \ll \mu$ Derivative: $\nu \ll \mu \Rightarrow \exists f$ s.t. $\nu(A)=\int_{A} f d \mu$. f is the derivative. Probability Measure: Space $(\Omega, \mathcal{F}, \mathbb{P})$, if $\mathbb{P}(\Omega)=1, \mathbb{P}$ is a probability measure.
 A set of prob. measures \mathcal{P} on (Ω, \mathcal{F}). If $\forall \mathbb{P} \in \mathcal{P}, \mathbb{P} \ll \mu, \rightarrow$ a family of p.
Random Variable: A measure function $X:(\Omega, \mathcal{F}) \rightarrow(E, \mathcal{G})$. : sample space. Random Variable: A measure function $X:(\Omega, \mathcal{F}) \rightarrow(E, \mathcal{G})$. E: sample spac
Support: $\operatorname{Supp}(\mathbb{P})=\{x: \mathbb{P}[a, b]>0, a<x<b\}$. If $\exists p$, it's $\{x: p(x)>0\}$
Set: A is a convex set if $\forall x, y \in A, 0<t<1 \Rightarrow t x+(1-t) y \in A$
Function: Real valued function $\phi(x)$ defined over open interval (a, b) is convex if $\forall a<x, y<b, \phi[r x+(1-r) y] \leq r \phi(x)+(1-r) \phi(y), 0<r<1$
If ϕ is twice differentiable: $\leq, \phi^{\prime \prime}(x) \geq 0, \forall a<x<b$
Model
Exponential Family: A parametric family $\left\{P_{\theta}: \theta \in \in \in\right.$ is said to be $s-$ dimensional a Exp family if the distributions P_{θ} have densities of form: $p_{\theta}(x)=$ $\exp \left\{\sum_{i=1}^{s} \eta_{i}(\theta) T_{i}(x)-A(\theta)\right\} h(x)$, where $A(\theta)$ is to normalize the density as
$A(\theta)=\log \left\{\int h(x) \exp \left[S^{s}\right)_{i}(\theta) T_{i}(x)\right\}$ $A(\theta)=\log \left\{\int h(x) \exp \left[\sum_{i=1} \eta_{i}(\theta) T_{i}(x)\right\}\right.$.
Ex: $N\left(\mu, \sigma^{2}\right): p(x)=\exp \left\{\frac{\mu}{\sigma^{2}} x-\frac{1}{2 \sigma^{2}} x^{2}-\frac{\mu^{2}}{2 \sigma^{2}}-\log (\sqrt{2 \pi} \sigma)\right\}$.
If $\mu=1$ is known, $\eta^{T} T$ cannot reduce to 1 term, but the dim of η is 1
Natural Exponential Family: Reparameterize by $\eta=\eta(\theta)$, and there is the canonical form: $p_{\eta}(x)=\exp \left\{\eta^{T} T(x)-B(\eta)\right\} h(x)$. Where η is the nature parameter, and the nature parameter space is $\Xi=\left\{\eta: \int p_{\eta} d \mu<\infty\right\}$

- Canonical form is not uniquee, as we can use $(c \eta, T / c)$ instead.
Dim oc θ and η can be different: $\eta_{1}=\eta_{2}=\frac{\theta}{2}, d(\theta)=1, d(\eta)=2, d(\Xi)=1$ If $\eta \in \mathbb{R}^{s}$ and $d(\Xi)=s$ i.e. Ξ contains a s-dim. open set, we say it's full rank. Properties: If X_{1}, X_{n} indep. exp. family r.v.s, the joint density is still exp. family.
$: T=\left(T_{1}, \cdots, T_{s}\right)=:(Y, U)$, then $Y, Y \mid U=u$ are still exp. family Any integrable function f and interior point $\eta_{0} \in \Xi, \mathbb{E}_{\eta} f(X)=\int f(x) p_{\eta} d \mu$ is in-
fnitely differentiable w.r.t η in a neighborhood of η. The diff. can interchange finitely differentiable w.r.t η in a neighborhood of η_{0}. The diff. can interchange
with int. Ex: take $f=1, \frac{\partial}{\partial \eta_{i}} \mathbb{E}_{\eta}\{1]=0=\mathbb{E}_{\eta}\left\{T_{i}-\frac{\partial}{\partial \eta_{i}} A(\eta)\right\} \Rightarrow \mathbb{E}_{\eta} T_{i}-\frac{\partial}{\partial \eta_{i}} A(\eta)$. with int. Ex: take $f=1, \frac{\partial \sigma_{i}}{\partial \eta_{\eta}} \mathbb{E}_{\eta}[1]=0=\mathbb{E}_{\eta}\left\{T_{i}-\frac{\partial}{\partial \eta_{i}} A\right.$
Similarly: $\frac{\partial^{2}}{\partial \eta_{j} \partial \eta_{j}} \mathbb{E}_{\eta}[1]=0 \Rightarrow \operatorname{Cov}\left(T_{i}, T_{j}\right)=\frac{\partial^{2}}{\partial \eta_{i} \eta_{j}} A(\eta)$
MGF: Let $u=\left(u_{1}, \cdots, u_{s}\right), M_{T}(u)=\mathbb{E} e^{u_{1} T_{1}+\cdots+u_{s} T_{s}}=e^{A(\eta+u)-A(\eta)}$. We need $\eta+u \in \Xi$, and $\mathbb{E} T_{i}^{n}=\left.\frac{\partial^{n}}{\partial u_{i}^{n}} M_{y}(u)\right|_{u=0}$.
Cumulate generating function: $K(u)=\log M(u)=A(\eta+u)-A(\eta)$ Prove NOT Exp family: Take $\frac{1}{2} e^{-|x-\mu|}$ as an example:
Assume it belongs to some exp family, and the jointed PDF of size n $f(x ; \mu)=2 \exp \left\{-\sum\left|x_{i}-\mu\right|\right\}=\exp \left\{\sum_{j=1}^{s}\left[\eta_{j}(\mu) \sum_{i=1}^{n} T_{j}\left(x_{i}\right)\right]-n A(\mu)\right\}$ Remove $h(x)$ by $\log [f(x ; \mu) / f(x ; 0)]=\sum\left|x_{i}\right|-\sum\left|x_{i}-\mu\right|=$
Note $\psi(x, \mu)=\sum_{n}\left|x_{i}\right|-\sum_{n}\left|x_{i}-\mu\right|, \tilde{\eta}_{j}(\mu)=\eta_{j}(\mu)-\eta_{j}(0), \tilde{A}(\mu)=A(\mu)$ $A(0), \tilde{T}_{j}(x)=\sum_{i=1}^{n} T_{j}\left(x_{i}\right)$ Above ${ }^{\text {is }} \psi(x, \mu)=\sum_{j=1}^{s} \tilde{\eta}_{j}(\mu) \tilde{T}_{j}(x)-n \tilde{A}(\mu)$.
- If the Exp assumption is correct: if $\exists x, y$ s.t. $\tilde{T}(x)=\tilde{T}(y) \Rightarrow \forall \mu$ same R.H.S \Rightarrow $\psi(x, \mu)=\psi(y, \mu), \forall \mu$. As a function of $\mu, \psi(x, \mu)$ is not differentiable at x_{i}. Hence, $T(X)=T(Y) \Rightarrow\left(X_{(1)}, \cdots, X_{(n)}\right)=\left(Y_{(1)}, \cdots, Y_{(n)}\right)$.
- However, we can find liner independent $\tilde{\eta}\left(\mu_{1}\right), \cdots, \dot{\eta}(\mu)$
a full rank linear system. So $\psi\left(x, \mu_{j}\right)=\psi\left(y, \mu_{j}\right), \forall j \Rightarrow \tilde{T}(X)=\tilde{T}(Y)$
a full rank linear system. So $\psi\left(x, \mu_{j}\right)=\psi\left(y, \mu_{j}\right), \forall j \Rightarrow \tilde{T}(X)=\tilde{T}(Y)$
If we choose $\min \left\{x_{i}\right\}>\max \left\{\mu_{j}\right\} \min \left\{y_{i}\right\}>\max \left\{\mu_{j}\right\}$, they can have same ψ. If the assumption is correct \Rightarrow same $\tilde{T} \Rightarrow$ same order statistics, which is not necessary. Sufficient: $X \sim P \in \mathcal{P}, T(X)$ is suff. for P if the distribution of $X \mid T$ doesn't depend on P. (parametric: not on θ). The family \mathcal{P} or Θ need to be given Factorization Thm: $X \sim P \in \mathcal{P}$, and $P \ll \mu$. Then T is suff. iff the density can be written as $\frac{d}{d \mu} P(x)=g_{p}(T(x)) h(x)$, i.e. $f(x)=g(T, \theta) h(x)$.
Not Unique: T is suff. and $\exists h(U)=T, U$ is also suff. Exp Family: T is always suff. by the Factorization Thm.
Minimal Sufficient Statistic: T is MSS iff for any other suff

Unique: T_{1}, T_{2} are MSS, by Def there is a $1-1$ mapping between them.
Existerce
Existence: Usually exists, but exceptions are possible
heck MSS: (1)Suppose $\mathcal{P}_{0} \subset \mathcal{P}$ with a.s. $\mathcal{P}_{0} \Rightarrow a . s . \mathcal{P}$. If T is suff. for \mathcal{P} and MSS (2) Suppose \mathcal{P} contains
 $\sum_{i=1}^{\infty} c_{i} f_{i}$ where $c_{i}>0, \sum_{i}=1$ and $T_{i}(X)=f_{i}(X) / f_{\infty}(X)$ where $f_{\infty}(X)>0$.
Then $T=\left(T_{0}, T_{1}, \cdots\right)$ is MSS. If $\forall i \geq 1:\left\{x: f_{i}(x)>0\right\} \subset\left\{x: f_{0}(x)>0\right\}$, use f_{0} instead of $f_{\infty}, T=\left(T_{1}, T_{2}, \cdots\right)$ is MSS.
Remark: f_{∞} cover the union of the supports, with $\int f_{\infty} d \mu=1$
\mathcal{P} only contains countable $f_{i} . \Rightarrow$ Choose countable from \mathcal{P}, then ues (1).
$f_{p}(x)=f_{p}(y) \psi(x, y)$ for all $P \stackrel{\text { for }}{\Rightarrow} T(x)=T(y)$. Then T is MSS. i.e. $f_{p}(x) / f_{p}(y)$
$f_{p}(x)=f_{p(y)}(x, y)$ for all $P \Rightarrow T(x)$
doesn't depends on $p \Leftrightarrow T(x)=T(y)$.
Exp. family: If $\exists \eta_{o}, \cdots, \eta_{s} \in \Xi$, s.t. $\eta_{1}-\eta_{0}, \cdots, \eta_{s}-\eta_{0}$ linear indep. $T(x)-T(y)=0$
is the only root of $\eta^{T}(T(x)-T(y))=0 \Rightarrow T$ is MSS.
Such η exist if it is full rank
Such η exist if it is full rank.
Ancillary: $V(X)$ is ancillary if it's distribution doesn't depends on P
Complete: $T(X)$ is complete iff any me
$\mathbb{E}_{P}[f(T)]=0 \forall P \in \mathcal{P} \Rightarrow f=0$ a.s. \mathcal{P}
If $f(T)]=0 \forall P \in \mathcal{P} \Rightarrow f=0$ a.s. \mathcal{P}

- If T is complete, $S=\psi(T)$ is also complete
If T is complete and sufficient, T is MSS: If $\exists t$ is MSS, $t=g(T)$ by definition, Let $h(t)=\mathbb{E}_{P}(T \mid t) \rightarrow \mathbb{E}_{P}[h(t)-T]=0, \forall P \in \mathcal{P}$. As comp. $T=h(t)$ a.s. \mathcal{P}. Hence there is $1-1$ mapping between T, t, T is also MSS.
Full Rank Exp. family: T is suff. \& comp. \Rightarrow MSS: Proof:
T is suff. by Factorization Thm.

Suppose f s.t. $\mathbb{E}_{\eta}[f(T)]=\int f(t) p_{\eta}(t) d \lambda=0$, for all $\eta \in \Xi$.
Let η_{0} be a interior point of E, and there is a neighborhood
Let η_{0} be a interior point of
with

$\int e^{a t} \frac{p_{\eta_{0}}(t) f_{-}(t)}{c} d \lambda$. As such a can cover $N_{\epsilon}\left(\eta_{0}\right)$, they have same MGF in a neigh-

Basu's Thm: If T is comp.\& suff. any ancillary $V: V \Perp T$
If V is ancillary, $p_{A}=P[V \in A]$ doesn't depend on $P \in \mathcal{P}$ Proof:
If V is ancillary, $p_{A}=P[V \in A]$ doesn't depend on $P \in \mathcal{P}$. Let $\eta_{A}(t)=P[V \in \mathbb{A} \mid T=t]$ allo indep. of P As $\left.\mathbb{E} \eta(T)=p, \mathbb{E}\left[\eta_{A}(T)-p_{A}\right]=0 \forall P\right)$ $A_{A s}=t$. $\left.\eta_{A}(T)=\mathbb{P}[V \in A \mid T]=\mathbb{P} \mid V \in A\right]=p_{A}$, a.s. \mathcal{P}, i.e. $V \perp T$.
Estimator
Point estimator: statistic $T(X)$ estimate τ. (Fun. of para., or non-para. dist.)
Bias: $\mathbb{E} T-\tau$ Unbiased: $\mathbb{E} T=\tau$
Bias: $\mathbb{E} T-\tau$ Unbiased: $\mathbb{E} T=\tau$
Less function: $L(\tau, T(X)): \Theta \times\left\{T(X), X \in \mathbb{R}^{n}\right\} \rightarrow[0, \infty)$, e.g. $(T-\tau)^{2}$
Risk function: $R(\tau, T)=\mathbb{E} P(L(\tau, T)] P \in \mathcal{P}$. Expectation wr.t. T and P.
Risk function: $R(\tau, T)=\mathbb{E}^{E} P(L(\tau, T) \mid P \in \mathcal{P}$. Expectation w.r.t. T and P.
Admissibility: T is inadmissible if \exists another estimator U s.t. $R(\tau, T) \geq R(\tau, U)$ for
Admissibility: T is inadmissible if \exists another estimator U s.t. $R(\tau, T) \geq R(\tau, U)$ for
all $P \in \mathcal{P}$. And \ggg for some P. If no such U, T is admissible.
UMVUE: Unbiased T of τ is \ldots if any other unbiased $\operatorname{U}: \operatorname{Var} U \geq \operatorname{Var} T \forall P \in \mathcal{P}$.
Locally MVUE: VarT $\leq \operatorname{VarU}$ at some fixed $P \in \mathcal{P}$
\cdot May not exist: Ex: $\bar{X} \sim \operatorname{Binomial}(n, \theta) \tau=\frac{1}{\theta}$ If $T(X)$ unbiased: $\mathbb{E}_{\theta} T(X)=$
 unbiased estimator of τ.
- Estimable: if \exists unbiased estimator of τ, it is called estimable.
 Then $\phi(\mathbb{E} X) \leq \mathbb{E}[\phi(X)]$. If strictly convex, "<", unless $\mathbb{P}[X=c]=1$.
convex in a for any $P \in \mathcal{P}$. Let $T(X)$ be the estimator of τ with finite risk $R(\tau, T)$, then $U=\mathbb{E}[T \mid S]$ s.t. $R(\tau, U) \leq R(\tau, T)$. Proof: (Jensen's)
$\left.R(\tau, T)=\mathbb{E}_{S}\left\{\mathbb{E}_{T \mid S}[L \tau, T) S\right]\right\}>\mathbb{E}_{S}[L(\tau, \mathbb{E}(T \mid S)]=R(\tau U)$
$R(\tau, T)=\mathbb{E}_{S}\left\{\mathbb{E}_{T \mid S}[L(\tau, T) \mid S]\right\} \geq \mathbb{E}_{S}[L(\tau, \mathbb{E}(T \mid S))]=R(\tau, U)$
Requirement: Convex loss function: es 0 . 1 loss is not
Requirement: Convex loss function: e.g. 0-1 loss is not convex
Lemman-Scheffe Thm: Suppose S is suff. and comp. for $P \in \mathcal{P}$, and τ estimable
- $h(S)$ is the unique UMVUE for τ. Proof: estimable $\Rightarrow \exists T$ s.t. $\mathbb{E} T=\tau \Rightarrow h(S)$
$\mathbb{E}(T \mid S) . \mathbb{E} h(S)=\mathbb{E} T=\tau \forall P \in \mathcal{P}$ Unbiased \checkmark As S comp, if $\exists \mathbb{E} g(S)=\tau \forall P \in$
$\underset{\mathcal{P}, h(S)}{\mathbb{E}(S(S)}=g(s . \mathcal{P}$.Uniqueness \checkmark Any unbiased $U, h(S)=\mathbb{E}[U \mid S]$ is same(as unique). By Rao-B, $R(\tau, h(S)) \leq R(\tau, U)$. UMVUE \checkmark
Find UMVUE: get a suff \& comp S first then.
Find UMVUE: get a suff \& comp S first then: Find h s.t. $\mathbb{E} h(S)=\tau$;
. Solve $\mathbb{E}_{P}(h(S))=\tau \forall P \in \mathcal{P}$ directly; . Find unbiased $T, h(S)=\mathbb{E}(T \mid S)$
EX1: $X_{i} \sim N\left(\mu, \sigma^{2}\right) \mu \in \mathbb{R}, \sigma>0: T=\left(\bar{X}, S^{2}\right)$ is comp \& suff for $\theta=\left(\mu, \sigma^{2}\right)$, with
EX1: $X_{i} \sim N(\mu, \sigma) \mu \in \mathbb{R}, \sigma>0: T=\left(\bar{X}, S^{2}\right)$ is comp \& suff for $\theta=\left(\mu, \sigma^{2}\right)$, with
$\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right), \frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}$ and $\bar{X} \Perp \frac{(n-1) S^{2}}{\sigma^{2}}$. For $\mu: \mathbb{E} \bar{X}=\mu$, it's UMVUE. For $\mu^{2}: \mathbb{E}\left[\bar{X}-\frac{S^{2}}{n}\right]=\mu^{2}$, it's unbiased, and function of T hence UMVUE.
$\sigma^{r}:$ Let $Y \sim \chi_{n-1}^{2}, \mathbb{E} S^{r}=\mathbb{E}\left(\frac{\sigma^{2} Y}{n-1}\right)^{\frac{r}{2}}=2^{r / 2} \frac{\sigma^{r}}{(n-1)^{r / 2}} \frac{\Gamma[(n-1+r) / 2]}{\Gamma[(n-1) / 2]}$ When $r>1-n$,
$\mathbb{E} \frac{(n-1)^{r / 2} \Gamma[(n-1) / 2]}{2^{r / 2} \Gamma[(n-1+r) / 2]} S^{r}=\mathbb{E} k_{n-1, r} S^{r}=\sigma^{r}$, it's unbiased and function of T, hence
$\mu / \sigma: \mu: \bar{X}, \sigma^{-1}: k_{n-1,-1} S^{-1}$ as indep, $\bar{X} k_{n-1,-1} S^{-1}$ unbiased and fun of T.
τ s.t. $\mathbb{P}\left[X_{1} \leq \tau\right]=p: \tau=\mu+\Psi^{-1}(p) \sigma$, sub result of μ, σ in.
EX2: $X_{i} \sim \operatorname{Uni}(0, \theta): X_{(n)}$ is comp. \& suff. with $\mathbb{E}\left(\frac{n+1}{n} X_{(n)}\right)=\theta$.
Approach 2: Let $\mathbb{E}_{\theta} h(S)=\tau$, expand both sides. As a function of θ, The coefficien should be same. Then we can get function h.
for all $\theta \in(0,1) \Rightarrow \mathbb{E} h(S)=\sum h(k)(n) \theta^{k}(1-\theta)^{n-k}=\theta(1-\theta)$. Assume $\mathbb{E} h(S)=$ for all $\theta \in(0,1) \Rightarrow \mathbb{E} h(S)=\sum_{\theta} h(k)\binom{n}{k} \theta^{k}(1-\theta)^{n-k}=\theta(1-\theta)$. Divide by $(1-\theta)^{n}$
on both sides, and let $\rho=\frac{1}{\theta}: \sum_{n}^{n} h(k)\binom{n}{k} \rho^{k}=\rho(1+\rho)^{n-2}=\sum^{n-1}\left(\begin{array}{l}n-2\end{array}\right) \rho^{k}$ on both sides, and let $\rho=\frac{\theta}{1-\theta}: \sum_{k=0}^{n} h(k)\binom{n}{k} \rho^{k}=\rho(1+\rho)^{n-2}=\sum_{k=1}^{n-1}\binom{n-2}{k-1}$ $\Rightarrow h(0)=h(n)=0, h(k)=\binom{n-2}{k-1} /\binom{n}{k}=\frac{k(n-k)}{n(n-1)} \Rightarrow h(T)=\frac{T(n-T)}{n(n-1)}$
EX4: Power series: $\mathbb{P}[X=x]=\gamma(x) \theta^{x} / c(\theta), \gamma(x)$ known, θ unknown
Poisson $(\theta): \gamma(x)=\frac{1}{1}, c(\theta)=e^{\theta}, \quad$ Bino $(n, p): \gamma(x)=\binom{n}{n} I_{\mathbb{N}}(x), c(\theta)=(1+\theta)^{n}$
As full rank Exp Family: $T=\sim X_{i}$ is comp \& suff. ${ }^{\text {PMF of } T} T$ is $\mathbb{P} \mid T=t$ As full rank Exp Family: $T=\sim X_{i}$ is comp \& suff. PMF of T is $\mathbb{P}[T=$
$\gamma_{n}(t) \theta^{t} / c^{n}(\theta)$, where $\gamma_{n}(t)=\sum_{x_{1}+\cdots, x_{n}}\left[\gamma\left(x_{1}\right) \cdots \gamma\left(x_{n}\right)\right]$ For $\tau=g(\theta)$:
$\gamma_{n}(t) \theta^{t} / c^{n}(\theta)$, where $\gamma_{n}(t)=\sum_{x_{1}+, \cdots,+x_{n}=t}\left[\gamma\left(x_{1}\right) \cdots \gamma\left(x_{n}\right)\right]$ For $\tau=g(\theta)$:
$g(\theta)=\frac{\theta^{r}}{[c(\theta)]^{p}}$ assume $\mathbb{E} h(T)=\tau$ then $\sum_{t=1}^{\infty} h(t) \gamma_{n}(t) \theta^{t}=[c(\theta)]^{n-p} \theta^{r}$
$\sum_{t=1}^{\infty} \gamma_{n-p}(t) \theta^{t+r}=\sum_{t=r}^{\infty} \gamma_{n-p}(t-r) \theta^{t}$ where the second equality is expectation of real number w.r.t PMF of $n-p$. Then $h(T)=\frac{\gamma_{n-p}(T-r)}{\gamma_{n}(T)} I_{(T \geq r)}$.
EX 3rd approach: $X_{i} \sim f_{\theta}=\theta x^{-2} I_{(x>\theta)}, \tau=\mathbb{P}\left[X_{1}>t\right]$, where $t>0$ is a constan $X_{(1)}$ is comp \& suff while $T=I_{\left(X_{1}>t\right)}$ is unbiased. The UMVUE is $\mathbb{E}\left[T \mid X_{(1)}\right.$ $\square \quad$ i.e. $\mathbb{P}\left[X_{1}>t \mid X_{(1)}=x_{(1)}\right]=\mathbb{P}\left[\left.\frac{X_{1}}{x_{(1)}}>\frac{t}{x_{(1)}} \right\rvert\, X_{(1)}=x_{(1)}\right]=\mathbb{P}\left[\frac{X_{1}}{x_{(1)}}>\frac{t}{x_{(1)}}\right]$ $\frac{X_{1}}{X_{(1)}}$ is ancillary.Let $S=\frac{t}{x_{(1)}}$. When $s<1$, as $\frac{X_{1}}{X_{(1)}} \geq 1$ a.s., $\mathbb{P}[\cdot]=0$. When $s \geq 1 \mathbb{P}\left[\frac{X_{1}}{X_{(1)}}>s\right]=\sum_{i=1}^{n} \mathbb{P}\left[\frac{X_{1}}{X_{(1)}}>s, X_{(1)}=x_{i}\right]=(n-1) \mathbb{P}\left[\frac{X_{1}}{X_{(1)}}>s, X_{(1)}=\right.$ $\left.x_{n}\right]=(n-1) \mathbb{P}\left\{X_{1}>s X_{n}, X_{2}>X_{n}, \cdots, X_{n-1}>X_{n}\right\}=\mathbb{E}\left\{\mathbb{P}\left[X_{1}>s X_{n}, X_{2}>\right.\right.$ $\left.\left.X_{n}, \cdots, X_{n-1}>X_{n}\right] \mid X_{n}\right\}$. Int. with the pdf given above, it is $\frac{n-1}{n t} X_{(1)}$. Hence, $h\left(X_{(1)}\right)=\frac{n-1}{n t} X_{(1)} I_{X_{(1)} \leq t}+I_{X_{(1)}>t}$ is UMVUE of τ
Non-parametric: Order statistic $T=\left(X_{(1)}, \cdots, X_{(n)}\right)$ is comp \& suff. Function $\psi\left(X_{1}, \cdots, X_{n}\right)$ is a function of T iff ψ is symmetric. Hence, unbiased U-statistic is
UMVUE. e.g. $\bar{X}: \mathbb{E} X_{1} ; S^{2}=\frac{1}{n} \sum\left(X_{i}-\bar{X}\right)^{2}: \operatorname{Var} X_{1} ; F_{n}(t)=\sum I_{X_{i}}<t: F(t)$. Stein's Shrinkage: $X_{i} \sim N\left(\theta, I_{k}\right)$, where θ is an unknown $k \times 1$ vector. We know \bar{X} is UMVUE for θ. It is proved \bar{X} is inadmissible when $k \geq 3$. Assume $\hat{\theta}=\bar{X}+\frac{1}{n} g(\bar{X})$ with g to be determined s.t. $\mathbb{E}\left[\|\bar{X}-\theta\|^{2}\right]-\mathbb{E}\left[\|\hat{\theta}-\theta\|^{2}\right]>0$, for $\theta \in \Theta$. Rewrite as: $\mathbb{E}\left[\|\bar{X}-\theta\|^{2}\right]-\mathbb{E}\left[\left\|\bar{X}-\theta+\frac{1}{n} g(\bar{X})\right\|^{2}\right]=-\frac{1}{n^{2}} \mathbb{E}\|g(\bar{X})\|^{2}-\frac{2}{n} \mathbb{E}\left\{g^{T}(\bar{X})(\bar{X}-\theta)\right\}=$ $-\frac{1}{n^{2}} \mathbb{E}\|g(\bar{X})\|^{2}-\frac{2}{n} \sum_{j=1}^{k} \mathbb{E}\left\{g_{j}(\bar{X})\left(\bar{X}_{j}-\theta_{j}\right)\right\}$. Note $Y=\bar{X}$, with $\operatorname{pdf} f(y ; \theta)$, then $\left(Y_{j}-\theta_{j}\right)=-\frac{1}{n} \frac{\partial}{\partial Y_{j}} \log f(Y, \theta)$. Then integral by parts, there is $\mathbb{E}\left\{g_{j}(\bar{X})\left(\bar{X}_{j}-\theta_{j}\right)\right\}=$ $\frac{1}{n} \mathbb{E}\left[\frac{\partial}{\partial Y_{j}} g_{j}(Y)\right]$. Question reduce to $\mathbb{E}\|g(\bar{X})\|^{2}+2 \sum_{j=1}^{k} \mathbb{E}\left[\frac{\partial}{\partial X_{j}} g_{j}(\bar{X})\right]<0$.
Consider $\psi: \mathbb{R}^{k} \rightarrow \mathbb{R}$ s.t. $g_{i}(x)=\frac{\partial}{\partial x_{i}} \log \psi(x)=\frac{1}{\psi(X)} \frac{\partial}{\partial x_{i}} \psi(x)$. If $\sum_{i=1}^{k} \frac{\partial^{2}}{\partial x_{i}^{2}} \psi(x)=$ 0 , we can check the inequality holds, and such ψ is called harmonic function. e.g. $\psi(x)=\|x\|^{-(k-2)}, k>3, g(x)=-\frac{k-2}{\| \|^{2}} x, \operatorname{MSE}(\hat{\theta})<\operatorname{MSE}(\bar{X})$.

James-Stein Estimator: Biased but better than all of the unbiased ones nformation Inequality
Interested in Squared Error Loss. $T(X)$ estimate $\tau(P)$, which is fun. of $P \in \mathcal{P}$ Fisher Information Preparation: 1. Parametric family with PDF $p(x ; \theta) \in \mathcal{P}_{\theta}$,
dominated by measure $\mu ;$ 2. Support doesn't depend on θ, denoted as A; dominated by measure $\mu ; 2$. Support doesn't depend on θ, denoted as A; 3 .
$\frac{\partial}{\partial \theta} p(x ; \theta)$ exists for all $x \in A, \theta \in \Theta$. 4. If T is any statistic with finite mean for all $\theta \in \Theta$, then the order of can be changed: $\frac{\partial}{\partial \theta} \int T p(x ; \theta) d x=\int T \frac{\partial}{\partial \theta} p(x ; \theta) d x$. Remark: all Exp family \checkmark, but $\operatorname{Uni}(0, \theta) \& \frac{1}{b} e^{-(x-a) / b} I_{(x>a)} \times$.
Fisher Information: Let X be a single sample from $P \in \mathcal{P}_{\theta}$, where parameter space Θ is an open set in \mathbb{R}. Suppose conditions above hold, the Fisher Information number is defined as: $I(\theta)=\mathbb{E}\left\{\frac{\partial}{\partial \theta} \log p(X ; \theta)\right\}^{2}=\int\left(\frac{\partial}{\partial \theta} \log p(x ; \theta)\right)^{2} p(x ; \theta) d x$
Multi-parameter: Fisher Information Matrix $I(\theta)=\mathbb{E}\left\{\frac{\partial}{\partial \theta} \log f_{\theta}(X)\left[\frac{\partial}{\partial \theta} \log f_{\theta}(X)\right]^{T}\right\}$ Remarks: - Fisher Information doesn't depend on estimator, but on parameterization. Let $\theta=\psi(\eta)$, FI of θ is $I(\theta)$, for $\eta: I_{\eta}(\eta)=\left[\psi^{\prime}(\eta)\right]^{2} I(\psi(\eta))$
Θ is open set: to make $\frac{\partial}{\partial \theta} p(x ; \theta)$ always exists. In Exp fam. full rank is n

Properties: • If $X \Perp Y, I_{X, Y}(\theta)=I_{X}(\theta)+I_{Y}(\theta)$. can be diff. dist. share same θ;
\quad. In particular: X_{1}, \cdots, X_{n} i.i.d $I_{n}(\theta)=n I_{1}(\theta)$;
Suppose $p(x, \theta)$ twice differentiable in
Θ, then $I(\theta)=-\mathbb{E}\left\{\frac{\partial^{2}}{\partial \theta \partial \theta^{T}} \log p(x ; \theta)\right\}$. Exp family satisfy this one.
Cramer-Rao Lower Bound: $T(X)$ is an estimator with $\mathbb{E} T=g(\theta)$ being a differentiable function of θ. Suppose P_{θ} has pdf $p(x ; \theta)$ w.r.t. a measure μ for all $\theta \in \Theta$, and $p(x ; \theta)$ is differentiable in θ, and s.t. $\frac{\partial}{\partial \theta} \int h(x) p(x ; \theta) d \mu=\int h(x) \frac{\partial}{\partial \theta} p(x ; \theta) d \mu, \theta \in \Theta$, for $h=1$ and $h(X)=T(X)$. Then $\operatorname{Var} T \geq\left[\frac{\partial}{\partial \theta} g(\theta)\right]^{T}\left[I_{n}(\theta)\right]\left[\frac{\partial}{\partial \theta} g(\theta)\right]$.
Remark: If T is unbiased and $\operatorname{Var} T=C R L B$, it is UMVE.
proved that $\operatorname{Cov}=g^{\prime}(\theta)$ and $\operatorname{Var}=I_{n}(\theta)$ as $\mathbb{E} \frac{\partial}{\partial \theta} \log p(X ; \theta)=0 ;$
Proof of multi: RHS $=\max \frac{\left(c^{T} \frac{\partial}{c^{\prime} g} g(\theta)\right)^{2}}{c^{T} I_{n}(\theta) c}$. Similar with $k=1$, use $c^{T} \frac{\partial}{\partial \theta} g(\theta)$ instead CRLB is not affected by 1-1 Reparameterize. Similar to that in Fisher Information. MLE
Definition: Let $X=\left(X_{1: n}\right)$ be a sample with joint PDF $f(x ; \theta)$ w.r.t measure μ when $\theta \in \Theta \subset \mathbb{R}^{k}$. For each outcome $x, f(x ; \theta)$ is a function of θ called Likelihood: $L(\theta)$ Let $\bar{\Theta}$ be the closure of $\Theta, \mathrm{A} \hat{\theta} \in \bar{\Theta}$ s.t. $L(\hat{\theta})=\max _{\theta \in \Theta} L(\theta)$ is called a ML estimate of θ. If $\hat{\theta}$ is a Borel function, it's MLE of θ
Let $g(\cdot)$ be a Borel function from $\theta \rightarrow \mathbb{R}^{p}, p \leq k$, if g is not $1-1, \hat{\nu}=g(\hat{\theta})$ is defined
to be MLE of $\nu=g(\theta)$. If it is $1-1$, by invariant to be MLE of $\nu=g(\theta)$. If it is $1-1$, by invariant of MLE, it's MLE of ν.
Computation: If Θ is finite: Compare directly;
Generally: Get $L(\theta) \rightarrow l(\theta)$, first derivative $=0$, second <0. Or Check by def.
Ex: $X_{1: n}=x_{1: n}$ observed, with $X_{i} \sim \operatorname{Bernoulli(p)} L(p)=p^{n \bar{x}}(1-p)^{n(1-\bar{x})}$.
$\Theta=(0,1), \Theta \xlongequal{=}[0,1]$. If $0<\bar{x}<1, \bar{x}$ is the unique root with second <0, and $l(p) \rightarrow 0$ when $p \rightarrow 0$ or 1 . If $\bar{x}=0$ ol $l(p)=(1-p)^{n}$, $v \hat{p}=0=\bar{x}$. If $\bar{x}=1$
$l(p)=p^{n} \nearrow, \hat{p}=1=\bar{x}$. Hence, MLE in Exp. fam.: $l(\eta) \propto \eta^{T} T-A(\eta)$, likelihood equation: $\frac{\partial}{\partial \eta} l(\eta)=T-\frac{\partial}{\partial \eta} A(\eta)=0$ and $\frac{\partial^{2}}{\partial \eta \partial \eta^{T}} l(\eta)=-\frac{\partial^{2}}{\partial \eta \partial \eta^{T}} A(\eta)=-\operatorname{Var}(T) \leq 0$. If $T(X)$ in the range of $\frac{\partial}{\partial \eta} A(\eta)$, T is unique MLE of $\mu(\eta)=\frac{\partial}{\partial \eta} A(\eta)$. As each component of $\mu(\eta)$ is monotone decreasing, $\exists \mu^{-1}$ s.t. $\eta=\mu^{-1}\left(\frac{\partial}{\partial \eta} A(\eta)\right)$, and hence $\hat{\eta}=\mu^{-1}(T)$ is the MLE of η. Asymptotic Properties:
Conditions: 1. $f(x ; \theta)$ are distinct; 2.they have common support; 3.Observations $X=\left(X_{1: n}\right)$ are iid with density $f\left(x_{i} ; \theta\right)$ w.r.t $\mu ; \quad$ 4.Space Θ contains an open set, Reasonability: With 1-3: Fornt
Consistency: With 1-4: Suppose for almost all $x, f(x ; \theta)$ is differentiable in the open set Θ, then, with probability 1 there is at least 1 seq. of $\hat{\theta_{n}}$ s.t. $\forall \epsilon>0, \mathbb{P}\left[\left|\hat{\theta}_{n}-\theta_{0}\right|>\right.$ $\epsilon] \rightarrow 0 \Leftrightarrow \hat{\theta}_{n} \rightarrow_{P} \theta_{0}$.
Efficiency: With 1-4, assuming Fisher Information exists and finite, together with: $\frac{\partial^{3}}{\partial \theta^{3}} f(x ; \theta)$ exists and continuous in θ;
$\int f(x ; \theta) d \mu$ can be 3 times differentiated under integral sign;
For all $\theta_{0} \in \Theta$ there exists positive number c and $M(X)$ wit
∞ s.t. $\| \frac{\partial^{3} \log f(x, \theta)}{}$
∞, s.t. $\left\|\frac{\partial^{2} \partial \theta_{i} \partial \theta_{k}}{\partial \theta_{i}}\right\| \leq M_{i j k}(x)$, for all $\left\|\theta-\theta_{0}\right\|<c$.
Then, any consistent seq. $\hat{\theta}: \sqrt{n}\left(\hat{\theta}_{n}-\theta_{0}\right) \rightarrow^{L} N\left(0,[I(\theta)]^{-1}\right)$.
Achieves the CRLB for unbiased estimators when $n \rightarrow \infty$.
whether or likelinood equation is unique, it's consistent, asymptotically efficient whether or not it's MLE.
Linear Model
Model Sett
Model Setting: Observations: $\left(X_{1}, Z_{1}\right), \cdots\left(X_{n}, Z_{n}\right), Z_{i}: p \times 1, X_{i}: 1 \times 1$;
Model: $X_{i}=Z_{i}^{T} \beta+\epsilon_{i}, i=1: n$. $\beta_{p \times 1}$: unknown parameter, ϵ_{i} : random error;
Matrix Form: $X_{n \times 1}=Z_{n \times p} \beta+\epsilon_{n \times 1}, Z$: design matrix (no ${ }^{T}$ here).
Estimation: LSE: If $\hat{\beta}$ s.t. $\|X-Z \hat{\beta}\|=\min _{b}\|X-Z \hat{b}\|$ it is LSE.
For any p vector $a, a^{T} \hat{\beta}$ is LSE of $a^{T} \beta$.
Solution: $\|X-Z \hat{b}\|^{2}=Z^{T} X+b^{T} Z^{T} Z b-2 X^{T} Z b, \frac{\partial}{\partial b} \cdots=0 \Rightarrow Z^{T} Z b=Z^{T} X$
As it is convex in b, any b s.t. $Z^{T} Z b=Z^{T} X$ is an LSE of β. If full rank, $r(Z)=p$
and $\hat{\beta}=\left(Z^{T} Z\right)^{-1} Z^{T} X$, if not $\hat{\beta}=\left(Z^{T} Z\right)^{-} Z^{T} X$.
Non-Full Rank case: $\exists \beta_{1} \neq \beta_{2}$, s.t. $Z \beta_{1}=Z \beta_{2}$, the model is nor identifiable.
Reparameterize: If Z,
Reparameterize: If $Z_{n \times p}$ is of rank $r, \exists Q_{r \times p}$ s.t. $Z=Z_{*} Q$, where $r\left(Z_{*}\right)=r$, and the model can be written as $X=Z \beta+\epsilon=Z_{*} Q \beta+\epsilon=Z_{*} \tilde{\beta}+\epsilon$.
To estimate $\nu a^{T} \beta$, only when $a=Q^{T} c$ for some c it is meaningful, i.e. $a^{T} \beta=c^{T} \tilde{\beta}$.
Assumptions: $A_{1}: \epsilon \sim N\left(0, \sigma^{2} I_{n}\right)$, with unknown $\sigma^{2}>0$
$A_{2}: \mathbb{E} \epsilon=0, \operatorname{Var} \epsilon=\sigma^{2} I_{n}$ with unknown $\sigma^{2}>0$
$A_{2}: \quad \mathbb{E} \epsilon=0$, Var $\epsilon=\sigma^{2} I_{n}$, with unknown $\sigma^{2}>0$
$A_{1}:$
$\mathbb{E} \epsilon=0$, Var ϵ unknown. (Actually $A_{1} \Rightarrow A_{2} \Rightarrow A_{3}$)
Properties: Assume a linear model with A_{3} :

1. $a=Q^{T} c$ for some $c \in \mathbb{R}^{r} \Leftrightarrow a \in R(Z)=R\left(Z^{T} Z\right)$, row space of Z;
2. If $a \in R(Z)$ the $\operatorname{LSE} \mathbb{R}^{T} \widehat{\beta}$ is
3. If $a \in R(Z)$, the LSE $a^{T} \hat{\beta}$ is unique and unbiased for $a^{T} \beta$

Proof: $a \in R(Z) \Rightarrow \exists b$ s.t. $a=Z^{T} Z b \Rightarrow a^{T} \hat{\beta}=b^{T} Z^{T} Z\left(Z^{T} Z\right)^{-} Z^{T} X, \mathbb{E} a^{T} \hat{\beta}=$
$b^{T} Z^{T} Z \beta=a^{T} \beta$. Unbiased \checkmark. If $\bar{\beta}$ is also LSE $Z^{T} Z \bar{\beta}=Z^{T} X \Rightarrow a^{T} \hat{\beta}-a^{T} \bar{\beta}=$
$b^{T} Z^{T} Z(\hat{\beta}-\bar{\beta})=b^{T}\left(Z^{T} X-Z^{T} X\right)=0$.
3. If $a \notin R(Z)$,

Proof: Assume $\exists h(X, Z)$ s.t. $\mathbb{E} h(X, Z)=a^{T} \beta$, then $a=\frac{\partial}{\partial \beta} a^{T} \beta=\frac{\partial}{\partial \beta} \mathbb{E} h(X, Z)=$ $\frac{\partial}{\partial \beta} \int \cdots d x=Z^{T} c$. Contradictory.
Ex: One Way ANOVA: $n=\sum n_{j}$, with integers $n_{1}, \cdots, n_{m}>0, X_{i j}=\mu_{i}+\epsilon_{i j}$.

$$
\begin{aligned}
& \epsilon \text { is similar to } X, \text { and } \beta=\left(\mu_{1}, \cdots, \mu_{m}\right)^{T} . \text { Then } Z^{T} Z=\operatorname{diag}\left(n_{1}, \cdots\right. \\
& \left(Z^{T} Z\right)^{-1}=\operatorname{diag}\left(n_{1}^{-1}, \cdots, n_{m}^{-1}\right) \hat{\beta}=\left(\bar{X}_{1} ., \cdots, \bar{X}_{m}\right) \text {. } \\
& \text { Linear Estimator: a linear function of } X \text { i.e. } c^{T} X \text { for some fixed } c . \\
& \text { LaT} a^{T} \hat{\beta} \text { is linear estimator with } c=Z\left(Z^{T} Z\right)^{-a} \cdot \operatorname{Var}\left(c^{T} X\right)=c^{T} \operatorname{Var}(\epsilon) c \\
& \text { If } a \in R(Z) \text { and } \operatorname{Var} \epsilon=\sigma^{2} I_{n}, \operatorname{Var} \hat{\beta}=\sigma^{2} a^{T}\left(Z^{T} Z\right)^{-} a \text {. }
\end{aligned}
$$

Properties With $A_{2}: \cdot \exists$ linear unbiased estimator of $a^{T} \beta$ iff $a \in R(Z)$.

- Gauss-Markov Thm: If $a \in R(Z)$, then the LSE $a^{T} \hat{\beta}$ is best linear unbiased estimator (BLUE) of $a^{T} \beta$. As Var $a^{T} \hat{\beta}$ is min. among all the unbiased linear estimator. Proof: 1. Assume $\exists c \in \mathbb{R}^{p}$ s.t. $a^{T} \beta=\mathbb{E}^{T} X=c^{T} Z \beta, \forall \beta \in \mathbb{R}^{p} \Rightarrow a=Z^{T} c$. 2. As $a \in R(Z)$, $\exists b$ s.t. $a^{T} \hat{\beta}=b^{T}\left(Z^{T} Z\right) \hat{\beta}=b^{T} Z^{T} X$ by def of LSE, and hence
$\operatorname{Var} c^{T} X=\operatorname{Var}\left(c^{T} X+a^{T} \hat{\beta}-a^{T} \hat{\beta}\right)=\operatorname{Var}\left(c^{T} X-b^{T} Z^{T} X\right)+\operatorname{Var}\left(a^{T} \hat{\beta}\right)+$ $2 \operatorname{Cov}\left(c^{T} X-b^{T} Z^{T} X, a^{T} \hat{\beta}\right) \geq \operatorname{Var}\left(a^{T} \hat{\beta}\right)+2 \sigma^{2}\left\{c^{T} Z b-b^{T} Z^{T} Z b\right\}$ as shown above
$a=Z^{T} c, c^{T} Z b-b^{T} Z^{T} Z b=a^{T} b-a^{T} b=0$.
Properties with A_{1} : • LSE $a^{T} \hat{\beta}$ is UMVUE for all estimable $a^{t} \beta$ - UMVUE for σ^{2} is $\hat{\sigma}^{2}=(n-r)^{-1}\|X-Z \hat{\beta}\|^{2}, r$ is rank of Z.
• Fir estimable $a^{T} \beta: a^{T} \hat{\beta} \sim N\left(a^{T} \beta, \sigma^{2} a^{T}\left(Z^{T} Z\right)^{-} Z\right),(n-r)$ Fir estimable $a^{1} \beta: a^{-} \hat{\beta} \sim N\left(a^{1} \beta, \sigma^{2} a^{I}\left(Z^{T} Z\right)^{-} Z\right),(n-r) \hat{\sigma}^{2} / \sigma^{2} \sim \chi_{n-r}^{2}$ Proof: 1 . As it is LSE $Z^{T} Z \hat{\beta}=Z^{T} X \Rightarrow\|X-Z \beta\|^{2}=\|X-Z \hat{\beta}\|^{2}+\|Z \hat{\beta}-Z \beta\|^{2}=$ $\|X-Z \hat{\beta}\|^{2}-2 \beta^{T} Z^{T} X+\|Z \beta\|^{2}+\|Z \hat{\beta}\|^{2}$, the pdf is $\exp \left\{\frac{1}{\sigma^{2}} \beta^{T} Z^{T} x-\frac{1}{2 \sigma^{2}}[\| X-\right.$
$\left.\left.Z \hat{\beta}\left\|^{2}+\right\| Z \hat{\beta} \|^{2}\right]+\cdots\right\} .\left(Z^{T} X,\|X-Z \hat{\beta}\|^{2}\right)$ is comp and suff for $\left(\beta, \sigma^{2}\right)$. If estimable, $a \hat{\beta}$ is unbiased function of $T \Rightarrow$ UMVUE.

$$
\text { 2. } \mathbb{E}\|X-Z \hat{\beta}\|^{2}=\operatorname{tr}\{\operatorname{Var} X-\operatorname{Var} Z \hat{\beta}\}=\sigma^{2}\left\{n-\operatorname{tr}\left[Z\left(Z^{T} Z\right)^{-} Z T\right]\right\}=\sigma^{2}\{n-
$$

$\left.\operatorname{tr}\left[\left(Z^{T} Z\right)^{-} Z T Z\right]\right\}=\sigma(n-r)$, hence unbiased function of T.
3. As it is linear function of normal, it still normal distribution.

Consistency of LSE: Model $X=Z \beta+\epsilon$ with A_{3}, consider LSE $a^{T} \hat{\beta}$ with $a \in R(Z)$. Let $\lambda_{+}[A]$ be the largest eigenvalue of A Suppose $\sup _{n} \lambda_{+}[$Vare $]<\infty$ and
$\lim _{n} \lambda_{+}\left[\left(Z^{T} Z\right)^{-}\right]=0$, then $a^{T} \hat{\beta} \rightarrow L^{L^{2}} a^{T} \beta$. i.e. $\mathbb{E}\left\|a^{T} \hat{\beta}-a^{T} \beta\right\|^{2} \rightarrow 0, a^{T} \hat{\beta} \rightarrow a^{T} a^{T} \beta$. Proof: $a \in R(Z) \Rightarrow \mathbb{E}\left[a^{T} \hat{\beta}\right]=a^{T} \beta$, only need to check Var $a^{T} \hat{\beta}=$ $a^{T}\left(Z^{T} Z\right)^{-} Z^{T}[\operatorname{Var} \epsilon] Z\left(Z^{T} Z\right)^{-} a$ which is less or equal $\lambda_{+}[\operatorname{Var\epsilon }] a^{T}\left(Z^{T} Z\right)^{-} a \leq$ $\lambda_{+}[$Var $\epsilon] \lambda_{+}\left[\left(Z^{T} Z\right)^{-}\right]\|a\|^{2} \rightarrow 0$.
Asymptotic Normality: Model $X=Z \beta+\epsilon$ with A_{3} Suppose $^{\inf } \boldsymbol{n}_{n} \lambda_{-}[$Var $\epsilon]>0$ and $\lim _{n} \max _{1 \leq i \leq n} Z_{i}^{T}\left(Z^{T} Z\right)^{-} Z_{i}=0$. Suppose further $n=\sum_{i} m_{j}$ with all of m_{j}
bounded by some m. Random error $\epsilon=\left(\xi_{1}, \cdots, \xi_{k}\right), \xi_{j} \in \mathbb{R}^{m_{j}}$ and $\xi^{\prime} s$ are independent.
$\left.\xi_{k}\right), \xi_{j} \in \mathbb{R}^{m_{j}}$ and $\xi^{\prime} s$ are inde-
. If $\sup _{i} \mathbb{E}\left|\epsilon_{i}\right|^{2+\delta}<\infty$ for any $a \in R(Z), \frac{a^{T}(\hat{\beta}-\beta)}{\sqrt{\operatorname{Var}\left(a^{T} \hat{\beta}\right)}} \rightarrow^{d} N(0,1)$
It still holds if $m_{1}=\cdots=m_{k}, \xi^{\prime}$ have same distribution.
a). $\lambda+\left[\left(Z^{T} Z\right)^{-}\right] \rightarrow 0$ and $Z_{n}^{T}\left(Z^{T} Z\right)^{-} Z_{n} \rightarrow 0$ as $n \rightarrow 0$
b). $\exists \nearrow \operatorname{seq}\left\{a_{n}\right\}$ s.t. $\frac{a_{n}}{a_{n}+1} \rightarrow 1$, and $\frac{Z^{T} Z}{a_{n}}$ converge to a positive defined matrix.

Ex1: $X_{i}=\beta_{0}+\beta_{1} t_{i}+\epsilon_{i} i=1: n$. If $\frac{\sum t_{i}^{2}}{n} \rightarrow c, \frac{\sum t_{i}}{n} \rightarrow d, c>d^{2}$. b) in Lemma \checkmark.
Ex2: One-Way ANOVA: $\max _{1 \leq i \leq n} Z_{i}^{T}\left(Z^{T} Z\right)^{-} Z_{i}=\lambda_{+}\left[\left(Z^{T} Z\right)^{-}\right]=\max \frac{1}{n_{j}}$. If
$\min n_{j} \rightarrow \infty$, Asymptotic Normality \checkmark
Decision Theory
X : a sample from population $P \in \mathcal{P} \quad \mathcal{X}$: the range of X
\mathcal{A} : the range of allowable actions
\mathcal{A} : the range of allowable actions $\left(\underset{\mathcal{A}}{ }, \mathcal{F}_{\mathcal{A}}\right)$: the action space
Decision Rule: A measurable function $T:\left(\mathcal{X}, \mathcal{F}_{\mathcal{X}}\right) \rightarrow\left(\mathcal{A}, \mathcal{F}_{\mathcal{A}}\right)$
Ex:. Point Estimation: \mathcal{A} is the parameter space Θ
Hypothesis testing: \mathcal{A} is reject or accept H_{0}
Loss function: Evaluate action $a: L(P, a): \mathcal{P} \times \mathcal{A} \rightarrow[0,+\infty)$.
Risk function: Evaluate rule $T_{(X)}: R_{T}(P)=\mathbb{E}_{P}[L(P, T(X))]=\int L(P, T(x)) d P_{X}$
If \mathcal{P} is parametric, θ is used instead.
If \mathcal{P} is parametric, θ is used instead.
\qquad
as good as: $R_{T_{1}}(P) \leq R_{T_{2}}(P), \forall P \in \mathcal{P}$; T_{2} if:
better than: T_{1} is as good as T_{2}, and $R_{T_{1}}(P)<R_{T_{2}}(P)$ for some $P \in \mathcal{P}$;
Equivalent: $R_{T_{1}}(P)=R_{T_{2}}(P), \forall P \in \mathcal{P}$;
Optimal: $T_{*} \in \mathcal{T}$ is \mathcal{T}-optimal if T_{*} is as good as any other $T \in \mathcal{T}$;
If there are tho \mathcal{T} - \in dmissible and not equT, T is \mathcal{T}-admissible.
e.g. Very small risk at some P, no better rules, but not as good as others.

Randomized Decision Rule: δ is a function on $\mathcal{X} \times \mathcal{F}_{\mathcal{A}}$, s.t. $\forall x \in \mathcal{X}, \delta(x, \cdot)$ is a measure on $\left(\mathcal{A}, \mathcal{F}_{\mathcal{A}}\right)$. i.e. If $X=x$ is observed, we have a distribution of actions.
Non-Randomized Rules can be regarded as $\delta(x,\{a\})=I_{\{a\}}(T(X))$
To show δ is randomized rule, we need to show $\delta(x$, is a prob. m
To show δ is randomized rule, we need to show $\delta(x, \cdot)$ is a prob. measure.
Loss function: $L(P, \delta, x)=\int_{\mathcal{A}} L(P, a) d \delta(x, a)$.
Risk function: $R_{\delta}(P)=\mathbb{E}_{P}[\mathcal{A}(P, \delta, X)]=\int_{C} X \int_{\mathcal{A}} L(P, a) d \delta(x, a) d P_{X}$
Randomized Rule with
Randomized Rule with Discrete Dist.: $\delta(x, \cdot)$ assign $p_{j}(x)$ to non-randomized $T_{j}(x)$
Ex: Non-rand. $T_{1}(X)=\bar{X}$, under SEL: $L_{1}=(\bar{X}-\theta)^{2}, R_{1}=(\mu-\theta)^{2}+\frac{\sigma^{2}}{\eta}$

is a convex function of a for any $P \in \mathcal{P}$. Let δ be a randomized rule s.t.
$\int_{\mathcal{A}}\|a\| d \delta<\infty<\infty$ for $\forall x \in \mathcal{X}$. Let $T(X)=\int_{\mathcal{A}}$ ad $\delta(x, a)$, then $L(P, T) \leq L(P, \delta, x)$ for
any $x \in \mathcal{X}, P \in \mathcal{P}$. Proof based on Jensen's inequality.
Squared Error Loss, Absolute Loss, etc are convex; $0-1$ Loss is not convex.
Interpret: Non-randomized T get from δ will be better.
Bayes Risk: Average of risk function $R_{T}(P)$ over $\mathcal{P}: r_{T}($ II $)$
Bayes Risk: Average of risk function $R_{T}(P)$ over $\mathcal{P}: r_{T}(\Pi)=\int_{\mathcal{P}} R_{T}(P) d \Pi$. Where
Π is a kno
$T_{*} \in \mathcal{T}$ s.t. $r_{T_{*}}(\Pi) \leq r_{T}(\Pi), \forall T \in \mathcal{T}$. T_{*} is called a \mathcal{T}-Bayes rule w.r.t Π.
called \mathcal{T}-minimax rule.
Recall Bayes Analysis:
X is from a population in a parametric family $\mathcal{P}=\left\{p_{\theta}: \theta \in \Theta\right\}$, where $\Theta \subset \mathbb{R}^{k}$ for
some fixed $k \in \mathbb{N}^{+}$. Real valued θ is a realization of r.v. $\tilde{\theta} \sim \pi, \pi$ is the prior dist.
Sample $X \in \mathcal{X}$ from $P_{\theta}=P_{X \mid \theta}$, it is conditional dist. of $X \mid \tilde{\theta}=\theta$.
Sample $X \in \mathcal{X}$ from $P_{\theta}=P_{X \mid \theta}$, it is conditional dist. of $X \mid \tilde{\theta}=\theta$.
Posterior: dist. of $\tilde{\theta}$ conditional on $X=x: \pi(\theta \mid x)=\int f\left(x_{1: n} \mid \theta\right) \pi(\theta) d x_{1: n}$
Marginal: dist of $X=x: m(x)=\int f\left(x_{1} \mid \theta\right) \pi(\theta) d \theta$
Marginal: dist. of $X=x: m(x)=\int f\left(x_{1: n} \mid \theta\right) \pi(\theta) d \theta$
Bayes Formula: Assume $\mathcal{P}=\left\{P_{\theta}: \theta \in \Theta\right\}$ is dominated by measure ν, and
$f_{\theta}(x)=\frac{d P_{\theta}}{d \nu}$ is a Borel function on $\left(\mathcal{X} \times \Theta, \sigma\left(\mathcal{B}_{\mathcal{X}} \times \mathcal{B}_{\theta}\right)\right)$. Let Π be a prior dist. on
Θ. Suppose that $m(x)=\int_{\Theta} f_{\theta}(x) d \Pi>0, \Pi$ is another measure on \mathcal{X}. Then the
Posterior dist $P_{\theta \mid x} \ll \Pi$ and $\frac{d P_{\theta \mid x}}{d \Pi}=\frac{f_{\theta}(x)}{m(x)}$. Further, if $\Pi \ll \lambda$ for a measure λ and $\frac{d \Pi}{d \lambda}=\pi(\theta)$, then $\frac{d P_{\theta \mid x}}{d \lambda}=f_{\theta}(x) \pi(\theta) / m(x)$.

a loss function. For any $x \in \mathcal{X}$, a Bayes action w.r.t. Π is any $\delta(x) \in \mathcal{A}$ s.t.
$\mathbb{E}[L(\tilde{\theta}, \delta(x) \mid X=x)]=\min _{a \in \mathcal{A}} \mathbb{E}[L(\tilde{\theta}, a \mid X=x)]$, the $\mathbb{E}[\cdot]$ is w.r.t posterior P
Remarks: - For each $x \in \mathcal{X} \delta(x)$ minimize posterior expected loss, and hence we can
get a mapping $\mathcal{X} \rightarrow \mathcal{A}$;
If the mapping is a measurable function, it is a Bayes Rule;
Bayes action depends on prior and loss function.
Properties: Assume conditions in Bayes Formula Thm satisfied, and loss function $L(\theta, a)$ is convex in a for any fixed θ. And for each $x \in \mathcal{X}, \mathbb{E}[L(\tilde{\theta}, a \mid X=x)]<\infty$

1) If $\mathcal{A} \subset \mathbb{R}^{p}$ is compact, a Bayes action exists for each $x \in \mathcal{X}$;
2) If $\mathcal{A} \subset \mathbb{R}^{p}$ and $L(\theta, a)$ goes to ∞ as $\|a\| \rightarrow \infty$ uniformly in $\theta \in \Theta_{0} \subset \Theta$ with
$\Pi\left(\Theta_{0}\right)>0$, a Bayes action exists for each $x \in \mathcal{X}$;
3) If $L(\theta, a)$ is strictly convex for each fixed θ in a in 2), 3), the result will be unique.

Ex1: $X_{i} \sim N\left(\mu, \sigma^{2}\right), \mu \sim N(a, b), \sigma^{2}$ is known under Squared Error Loss:
$\pi(\mu \mid x)=f\left(x_{1: n} \mid \mu\right) \pi(\mu) / m(x) \propto f\left(x_{1: n} \mid \mu\right) \pi(\mu) \propto \exp \left\{-\frac{n b+\sigma^{2}}{2 b \sigma^{2}}\left[\mu^{2}-2 \frac{b \sum x+a \sigma^{2}}{n b+\sigma^{2}} \mu\right]\right\}$
$\mu \left\lvert\, x \sim N\left(\frac{b \sum x+a \sigma^{2}}{n b+\sigma^{2}}, \frac{b \sigma^{2}}{n b+\sigma^{2}}\right)\right., \mathbb{E}[L \mid X=x]=\mathbb{E}\left[(\mu-\delta)^{2} \mid x\right]=\left(\delta-\frac{b \sum x+a \sigma^{2}}{n b+\sigma^{2}}\right)^{2}+\frac{b \sigma^{2}}{n b+\sigma^{2}}$
\Rightarrow Under SEL: $\delta(x)=\mathbb{E}[\mu \mid X=x]=\frac{b \sum x+a \sigma^{2}}{n b+\sigma^{2}}$
Ex2: Same setting with Ex1, but for $g(\mu)$, e.g. $g(\mu)=\mu^{2}: \delta=\mathbb{E}[g(\mu) \mid X=x]$.
Ex3: $X_{i} \sim \operatorname{Poisson}(\lambda), \lambda \sim \operatorname{Gamma}(a, b)$ find Bayes estimator of λ^{j}
$f\left(x_{1: n} \mid \lambda\right) \propto \lambda^{\sum x} e^{-n \lambda}, \pi(\lambda)=\frac{b^{a}}{\Gamma(a)} \lambda^{a-1} e^{-b \lambda}, \pi(\lambda \mid x) \propto \lambda^{\sum x+a-1} e^{-(b+n) \lambda}$
$\lambda \mid x \sim \operatorname{Gamma}\left(\sum x+a, b+n\right)=: \operatorname{Gamma}\left(a^{\prime}, b^{\prime}\right)$, the Bayes rule under SEL is:
$\mathbb{E}\left[\lambda^{j} \mid X=x\right]=\int_{0}^{\infty} \frac{b^{\prime} a^{\prime}}{\Gamma\left(a^{\prime}\right)} \lambda^{a^{\prime}+j-1} e^{-b^{\prime} \lambda} d \lambda=\frac{b^{\prime} a^{\prime}}{\Gamma\left(a^{\prime}\right)} \frac{\Gamma\left(a^{\prime}+j\right)}{b^{\prime} j+a^{\prime}}$.
Ex4: Bayes Classifier: label $y_{i}=1, \cdots, k, X_{i} \mid y_{i}=k \sim p_{k}\left(x_{i}\right)$
prior π and under $0-1$ loss the $\hat{y}=\arg \max _{y} p(y) \prod p\left(x_{i} \mid y\right)$.
Conjugate Prior: If a prior is in the same parametric family as the posterior, it's
Exp. Family: $f(x ; \eta)=h(x) \exp \left\{\eta^{T} T(x)-A(\eta)\right\}$ always have a conjugate prior
Exp. Family: $f(x ; \eta)=h(x) \exp \left\{\eta^{T} T(x)-A(\eta)\right\}$ always have a conjugate prior in
the form of $\pi(\eta ; \xi, \nu)=g(\xi, \nu) \exp \left\{\eta^{T} \xi-\nu A(\eta)\right\}$, where ν is a scalar and ξ is a
the form of $\pi(\eta ; \xi, \nu)=g(\xi, \nu) \exp \left\{\eta^{T} \xi-\nu A(\eta)\right\}$, where ν is a scalar and ξ is a
vector in the same length of η.
Admissibility: In a decision problem, let $\delta(X)$ be a Bayes rule w.r.t. a prior Π.
(i) If $\delta(X)$ is a unique Bayes rule, then $\delta(X)$ is admissible.
(ii) If Θ is a countable set, the Bayes risk $r_{\delta}(\Pi)<\infty$, and Π gives positive proba-
bility to each $\theta \in \Theta$, then $\delta(X)$ is admissible.
(iii) Let \mathcal{T} be the class of decision rules with continuous risk fun. If $\delta(X) \in \mathcal{T}$
$r_{s}(\Pi)<\infty$, and Π gives positive prob. to any open subset of Θ, then $\delta(X)$ is
$\stackrel{\mathcal{T}}{\boldsymbol{T} \text {-admissible. }}$
Remark: If T is better $\Rightarrow T$ has same posterior risk as $\delta(X) \Rightarrow T$ is also Bayes rule.
Problem: strictly better on Θ_{0}, where $\Pi\left(\Theta_{0}\right)=0$. No such Θ_{0} in i) ii) iii).
Bias: If $\delta(X)$ is Bayes estimator of $\tau(\theta)$ under SEL, w.r.t. Π. If $\delta(X)$ is unbi-

$r_{\delta}=\mathbb{E}_{\theta}\left\{\mathbb{E}_{X}\left[(\delta(X)-\tau(\theta))^{2} \mid \theta\right]\right\}=\mathbb{E} \delta^{2}(X)+\mathbb{E} \tau^{2}(\theta)-2 \mathbb{E}[\delta(X) \tau(\theta)]=0$.
Remark: Usually biased, comes from prior. But usually vanish when $n \rightarrow \infty$. eneralized Bayes Action: The minimization in the def. of Bayes action is same $\int_{\Theta} L(\theta, \delta(x)) f_{\theta}(x) d \Pi=\min _{a} \int_{\Theta} L(\theta, a) f_{\theta}(x) d \Pi$. This def. also works when Π is $\pi(\theta \mid x)$. δ solved from above is called Generalized Bayes Action. - Improper prior: $\Pi(\Theta) \neq 1$. Proper prior: $\Pi(\Theta)=1$

Ex: $X_{i} \sim N\left(\mu, \sigma^{2}\right), \mu \in \Theta \subset \mathbb{R}$ unknown, $\sigma^{2}>0$ known, under SEL:
No Information: If $\Theta=[a, b]$ we can set $\Pi=U n i(a, b)$. But if $\Theta=$
No Information: If $\Theta=[a, b]$ we can set $\Pi=U n i(a, b)$. But if $\Theta=\mathbb{R}$, let $\pi(\theta)=$ for all θ, it is improper. Minimize $\int_{\mathbb{R}}(\mu-a)^{2}\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left\{-\frac{\sum\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right\} d \mu$ is same with minimize: $\int_{\mathbb{R}}(\mu-a)^{2} \exp \left\{-\frac{1}{2 \sigma^{2}}\left[\sum\left(x_{i}-\bar{x}\right)^{2}+n(\bar{x}-\mu)^{2}\right]\right\} d \mu$ Let $\frac{\partial}{\partial a}[\cdot]=0$, the Bayes rule is $\delta(x)=\frac{\int_{\mathbb{R}} \mu \exp \left\{-n(\bar{x}-\mu)^{2} /\left(2 \sigma^{2}\right)\right\} d \mu}{\int_{\mathbb{R}} \exp \left\{-n(\bar{x}-\mu)^{2} /\left(2 \sigma^{2}\right)\right\} d \mu}=\bar{x}$. If $\Pi=N(a, b)$, it is $\frac{\sigma^{2}}{n b+\sigma^{2}} a+\frac{n b}{n b+\sigma^{2}} \bar{x}$, converge to \bar{x} when $b \rightarrow \infty$.
Admissibility of Generalized Bayes Rules: Suppose that Θ is an open set of \mathbb{R}^{k}. Let Admissibility of Generalized Bayes Rules: Suppose that Θ is an open set of \mathbb{R}^{k}. Let
\mathcal{T} be the class of decision rules having continuous risk functions. A decision rule \mathcal{T} be the class of decision rules having continuous risk functions. A decision rule
$T \in \mathcal{T}$ is \mathcal{T}-admissible if there exists a sequence $\left\{\Pi_{j}\right\}$ of (possibly improper) priors, which give positive measures to any open set, such that
(a) the generalized Bayes risks $r_{T}\left(\Pi_{j}\right)$ are finite for all j;
(b) for any $\theta_{0} \in \Theta$ and $\eta>0 \lim \frac{r_{T}\left(\Pi_{j}\right)-r_{j}^{*}\left(\Pi_{j}\right)}{\Pi_{j}\left(O_{\theta}\right)}=0$, where $r_{j}^{*}\left(\Pi_{j}\right)=\inf _{T} r_{T}\left(\Pi_{j}\right)$, and $O_{\theta_{0, \eta}}=\left\{\theta \in \Theta:\left\|\theta-\theta_{0}\right\|<\eta\right\}$ with $\Pi_{j}\left(O_{\theta_{0, \eta}}\right)<\infty$ for all j.
Proof: Suppose T is not \mathcal{T}-admissible. Then there exists $T_{0} \in \mathcal{T}$ s.t. $R_{T_{0}}(\theta) \leq$ $R_{T}(\theta)$ for all θ and $R_{T_{0}}\left(\theta_{0}\right)<R_{T}\left(\theta_{0}\right)$ for a $\theta_{0} \in \Theta$. From the continuous $R_{T_{0}}(\theta)<R_{T}(\theta)-\epsilon$ for $\theta \in O_{\theta_{0, \eta}}$, for some constant $\epsilon>0, \eta>0$. Then $r_{T}\left(\Pi_{j}\right)-r_{j}^{*}\left(\Pi_{j}\right) \geq r_{T}\left(\Pi_{j}\right)-r_{T_{0}}\left(\Pi_{j}\right)>\epsilon \Pi_{j}\left(O_{\theta_{0, \eta}}\right)$, contradictory with (b). Ex: $X_{i} \sim N\left(\mu, \sigma^{2}\right), \mu \sim N(a, b), \sigma^{2}$ is known under SEL: $\delta(X)=\bar{X}$
Risk function is continuous in μ if the risk is finite. Let $\Pi_{j}=N(0, j)$
$R_{\delta}(\mu)=\operatorname{Var} \bar{X}=\frac{\sigma^{2}}{n}$ fixed, and $r_{\delta}\left(\Pi_{j}\right)=\frac{\sigma^{2}}{n}$. Consider Bayes rule w.r.t. Π_{j} : $\delta_{j}=\frac{n j}{n j+\delta^{2}} \bar{X}, R_{\delta_{j}}(\mu)=\frac{\sigma^{2} n j^{2}+\sigma^{4} \mu^{2}}{\left(n j+\sigma^{2}\right)^{2}}, r_{j}^{*}\left(\Pi_{j}\right)=\frac{\sigma^{2} n j}{n j+\sigma^{2}}, \Pi_{j}\left(O_{\mu_{0}, \eta}\right) \approx \frac{2 n}{\sqrt{j}} \Phi^{\prime}\left(\xi_{j}\right)$ for some $\xi_{j} \in\left(\left(\mu_{0}-\eta\right) / \sqrt{j},\left(\mu_{0}+\eta\right) / \sqrt{j}\right) . j \rightarrow 0$, (b) satisfied $\Rightarrow \bar{X}$ admissible. for some $\xi_{j} \in\left(\left(\mu_{0}-\eta\right) / \sqrt{j},\left(\mu_{0}+\eta\right) / \sqrt{J}\right) . j \rightarrow 0$,
Empirical Bayes: Estimate the hyperparameter with historical data or the curren data x, if historical data is not available. This method is called Empirical Bayes View x from marginal dist. $P_{\xi}=\int_{\Theta} P_{\theta}(x) d \Pi_{\theta \mid \xi} . \Rightarrow$ Find MLE of ξ.
$X_{i} \sim N\left(\mu, \sigma^{2}\right), \mu \sim N(a, b), \sigma^{2}$ is known under SEL, $\Pi_{\theta \mid \xi}=N\left(0, \sigma_{0}^{2}\right)$, with $\xi=\sigma_{0}^{2}$ $P_{\xi}=\int_{\mathbb{R}} f\left(x_{1: n} \mid \mu\right) \pi\left(\mu \mid \sigma_{0}^{2}\right) d \mu \cdots l\left(\sigma_{0}^{2}\right) \propto\left(n \sigma_{0}^{2}+\sigma^{2}\right)^{-1 / 2} \exp \left\{-\frac{n \bar{x}^{2}}{2\left(n \sigma_{0}^{2}+\sigma^{2}\right)}\right\}$ MLE of σ_{0}^{2} is $\hat{\sigma_{0}^{2}}=\max \left\{0, \bar{x}-\sigma^{2} / n\right\}$.

Hierarchical Bayes: put a prior on hyperparameter.

Computation issues: we need $\mathbb{E}_{p}(\tau)$ where the expectation is w.r.t. posterior $p(\theta)$ CMC: Generate iid $\theta^{1: m}$ from a pdf $h(\theta)>0$ w.r.t
By SLLN, as $m \rightarrow \infty, \hat{\mathbb{E}}_{p}(\tau)=\frac{1}{m} \sum_{j} \frac{\tau\left(\theta^{j}\right) p\left(\theta^{j}\right)}{h\left(\theta^{j}\right)} \rightarrow a . s . \int \frac{\tau(\theta) p(\theta)}{h(\theta)}=\mathbb{E}_{p}(\tau)$. Minimax Rule
Definition: $T_{*}=\arg \inf _{T} \sup _{\theta \in \Theta} R_{T}(\theta)$
Control the worst case, but maybe not that good in other case. Find a Minimax Rule: Let $\Theta_{0} \subset \Theta$, and T is minimax of $\tau(\theta)$ when $\theta \in \Theta_{0}$. $\sup _{\theta \in \Theta} R_{T}(\theta)=\sup _{\theta \in \Theta_{0}} R_{T}(\theta), T$ is minimax on Θ. Proof: By def $\forall T_{0} \neq T: \sup _{\theta \in \Theta} R_{T}(\theta)=\sup _{\theta \in \Theta_{0}} R_{T}(\theta) \leq \sup _{\theta \in \Theta_{0}} R_{T_{0}}(\theta) \leq \sup _{\theta \in \Theta} R_{T_{0}}(\theta) \square$
Similarly, if T is unique minimax on Θ_{0} also unique on Θ Simimay, if T is unique . Le Π be also unique on Θ $\tau(\theta)$ w.r.t. Π. If $R_{T}(\theta) \leq \int R_{T}(\theta) d \Pi=r_{T}(\Pi), \forall \theta \in \Theta$. i.e. T has constant risk function or bounded by Bayes risk. Then: (1)' T is minimax
(2) If in addition T is the unique Bayes rule, it's also unique Minimax rule.
Proof: Let δ be any other rule Proof: Let δ be any other rule $\sup _{\theta} R_{\delta}(\theta) \geq \int R_{\delta}(\theta) d \Pi \geq \int R_{T}(\theta) d \Pi \geq \sup _{\theta} R_{T}(\theta)$ The last \geq comes from " $\forall \theta \in \Theta$ ". If unique, second \geq is $>$, i.e. unique minimax \square Corollary: Let Π be a proper prior on Θ and T be a Bayes rule of $\tau(\theta)$
$\exists \Theta_{0}$ s.t. $R_{T}(\theta)$ is constant on Θ_{0} which equals to $\sup _{\theta \in \Theta} R_{T}(\theta)$, then,

- If $\Pi\left(\Theta_{0}\right)=1, T$ is minimax; \quad. If in addition T is the unique Bayes rule w.r.t.
Π, it is also the unique minimax estimator. Proof:
$\Pi\left(\Theta_{0}\right)=1 \Rightarrow T$ is minimax on Θ_{0} (proved above) \Rightarrow minimax on Θ.
Ex: $X_{i} \sim \operatorname{Bernoulli}(p)$ estimate p under SEL, with prior $p \sim \operatorname{Beta}(\alpha, \beta)$ $p \mid x \sim \operatorname{Beta}\left(\alpha+\sum x, \beta+n-\sum x\right), T=\mathbb{E}[p \mid x]=\frac{\alpha+\sum x}{\alpha+\beta+\sum x}$
$R_{T}(p)=\frac{n p(1-p)+(\alpha-p \alpha-p \beta)^{2}}{(\alpha+\beta+n)^{2}}$. Let $\alpha=\beta=\sqrt{n} / 2, R_{T}(p)=1 /\left[4(1+\sqrt{n})^{2}\right]$ is a constant. $\Rightarrow T=\frac{(\alpha+\beta+n)^{2}}{\sqrt{n} X+1 / 2}$ is the unique minimax estimator.
Remark: Minimax estimators are irrelevant with prior, but depends on loss function. Limit of Bayes rules: Let $\Pi_{j} j=1,2, \cdots$ be a seq. of priors and r_{j} be the Bayes risk of a Bayes rule of $\tau(\theta)$ w.r.t. Π_{j}. If
$\liminf _{j} r_{j}>\sup _{\theta} R_{T}(\theta)$, then T is minimax.

Corollary: Let $\Pi_{j} j=1,2, \cdots$ be a seq. of priors and r_{j} be the Bayes risk of a Bayes
rule of $\tau(\theta)$ w.r.t. Π_{j}, If a rule T with constant risk function $R_{T}(\theta)=r<\infty$, and Ex: $X_{i} \sim N\left(\mu, \sigma^{2}\right), \theta=\left(\mu, \sigma^{2}\right)$
Ex: $X_{i} \sim N\left(\mu, \sigma^{2}\right), \theta=\left(\mu, \sigma^{2}\right)$ is unknown under SEL
First consider $\Theta=\mathbb{R} \times(0, c], \Theta_{0}=\mathbb{R} \times\{c\}$. On $\Theta_{0}: R_{\bar{X}}=\frac{c^{2}}{n}=r$ constant.
Recall: $\mu \sim N(0, j), r_{j}=\frac{c^{2} j}{n j+c^{2}} \rightarrow r$. Hence, \bar{X} is minimax on $\Theta_{0} \Rightarrow$ also on Θ. If $\Theta=\mathbb{R} \times(0, \infty)$ sup goes to ∞, it's meaningless.

Hypothesis Testing

Sample $X_{1: n} \sim P \in \mathcal{P}$. Test: $H_{0}: P \in \mathcal{P}_{0}$ v.s. $H_{1}: P \in \mathcal{P}_{1}, \mathcal{P}_{0} \subset \mathcal{P}, \mathcal{P}_{1}=\mathcal{P} \backslash \mathcal{P}_{0}$ If \mathcal{P}_{0} contains only 1 element, we call it simple null hypothesis; otherwise composite Test is a statistic $T(X)$ takes value in $[0,1]$. When $X=x$ is observed, we reject H_{0}
with probabilit $T(x)$. If $T(X) \in\{0,1\} a s \mathcal{P}$ it's non-randomized, with probability $T(x)$. If $T(X) \in\{0,1\}$ a.s.P, it s non
Errors: Type I error $\mathbb{P}\left[\right.$ reject $H_{0} \mid H_{0}$ is true $]$ i.e. $\mathbb{E}_{0}[T]$
\quad Type II error $\mathbb{P}\left[\right.$ accept $H_{0} \mid H_{1}$ is true $]$ i.e. $\mathbb{E}_{1}[1-T]$
Power function: $\beta_{T}(P)=\mathbb{E}_{P}[T(X)]$, it is a function of $P \in \mathcal{P}$
Level $\alpha: \sup _{P \in \mathcal{P}_{0}} \beta_{T}(P) \leq \alpha \quad$ Size $\alpha: \sup _{P \in \mathcal{P}_{0}} \beta_{T}(P)=\alpha$
Uniformly Most Powerful Test (UMP)
Test T_{*} of size α is a UMP test iff $\beta_{T_{*}}(P) \geq \beta_{T}(P)$ for all $P \in \mathcal{P}_{1}$ and T of level α. If $U(X)$ is a suff statistic for $P \in \mathcal{P}$, for any test $T(X), E[T \mid U]$ is a test, with same power function as T. As $\mathbb{E}[E[T \mid U]]=\mathbb{E}[T] \forall P$. To find UMP, consider $\psi(U)$ only. Neyman-Pearson lemma: Let $\mathcal{P}_{0}=\left\{P_{0}\right\}, \mathcal{P}_{1}=\left\{P_{1}\right\}, f_{j}$ be the pdf of P_{j}
α, given by T_{*}, where $\gamma \in[0,1], c \geq 0$ is to be determined as $\mathbb{E}_{0}\left[T_{*}(X)\right]=\alpha$.

$$
T_{*}(X)=\left\{\begin{array}{ll}
1 & f_{1}(X)>c f_{0}(X) \\
\gamma & f_{1}(X)=c f_{0}(X) \\
0 & f_{1}(X)<c f_{0}(X)
\end{array} \quad T_{* *}(X)= \begin{cases}1 & f_{1}(X)>c f_{0}(X) \\
0 & f_{1}(X)<c f_{0}(X)\end{cases}\right.
$$

(ii) (Uniqueness). If $T_{* *}(X)$ is a UMP test of size α, then \uparrow a.s. \mathcal{P}

Can only differ on $B \stackrel{*}{=}\left\{x: f_{1}(x)=c f_{0}(x)\right\}$. T_{*} is the simplest form of randomized Remarks: - Both null and alternative are simple

UMP exists, and unique except on $B \quad$. If $\nu(B)=0 \Rightarrow$ unique UMP

- If $\nu(B)>0 \Rightarrow$ Random, but can be constant γ on $B ; \quad \cdot \lambda=\frac{f_{1}(X)}{f_{0}(X)}$ is suff

Proof: Assume $\alpha \in(0,1)$.

(1) γ, c exist: $\mathbb{E}_{0} T_{*}=\mathbb{P}_{0}\left[f_{1}(X)>c f_{0}(X)\right]+\gamma \mathbb{P}_{0}\left[f_{1}(X)=c f_{0}(X)\right]$. Le $\gamma(t)=\mathbb{P}_{0}\left[f_{1}(X)>t f_{0}(X)\right]$ it is non-increasing with $\gamma(0)=1, \gamma(\infty)=0$. Thus $\exists c \in(0, \infty)$ s.t. $\gamma(c) \leq \alpha \leq \gamma(c-)$. Set $\gamma=\frac{\alpha-\gamma(c)}{\gamma(c-)-\gamma(c)} I_{(\gamma(c-) \neq \gamma(c))}$. Note that $\gamma(c-)-\gamma(c)=\mathbb{P}_{0}\left[f_{1}(X)=c f_{0}(X)\right]$. Such γ, c satisfy.
(2) T_{*} is UMP: another T s.t. $\mathbb{E}_{0} T<\alpha$ As T.
and $T_{*}<T \Rightarrow T>1, f_{1}(X)<f_{0}(X)$. As $T_{*}>T \Rightarrow T_{*}>0, f_{1}(X) \geq c f_{0}(X)$,
and $T_{*}<T \Rightarrow T_{*}<1, f_{1}(X) \leq c f_{0}(X)$, there is $\left[T_{*}-T\right]\left[f_{1}(X)-c f_{0}(X)\right] \geq 0$
$\int\left[T_{*}-T\right] f_{1} d \nu=\beta_{T_{*}}(1)-\beta_{T}(1) \geqslant c \int\left[T_{*}-T\right] f_{0} d \nu=c\left[\beta_{T_{*}}(0)-\beta_{T}(0)\right] \geq 0$
$\int\left[T_{*}-T\right] f_{1} d \nu=\beta_{T_{*}}(1)-\beta_{T}(1) \geq c \int\left[T_{*}-T\right] f_{0} d \nu=c\left[\beta_{T_{*}}(0)-\beta_{T}(0)\right] \geq 0$
(3) Uniqueness: Define $=\left\{x: f_{1}(x) \neq c f_{0}(x)\right\}$. Similarly $\left[T_{*}-T\right]\left[f_{1}(X)-\right.$
$\left.c f_{0}(X)\right]>0$ when $X \in A,[1[\cdot]=0$ when $X \notin A$. As both UMP test with size α
$\left.c f_{0}(X)\right]>0$ when $X \in A,[\cdot][\cdot]=0$ when $X \notin A$. As both UMP test with size α

$\Rightarrow \nu(A)=0 \Rightarrow T_{*} \neq T_{* *}$ only on B
Procedure: $\lambda=f_{1}(X) / f_{0}(X) \rightarrow$ if λ
λ monotone in $U(X)$
$U<d$ or $U>d$ instead.
Ex: X is a sample of size $1, P_{0}=N(0,1), P_{1}: e^{-|x| / 2} / 4$. UMP test of level $\alpha<1 / 3$
$\lambda(X)=\sqrt{\frac{\pi}{8}} \exp \left\{\frac{x^{2}-|x|}{2}\right\}$ monotone in $\left(|x|-\frac{1}{2}\right)^{2}$ As it is continuous, $\nu(B)=0$ Then $\lambda>c \Leftrightarrow|x|>$ tor $|x|<1-t$.
Ex: $X_{i} \sim \operatorname{Bernoulli(p),} H_{0}: p=p_{0}$ v.s. $H_{1}: p=p_{1}$, where $0<p_{0}<p_{1}<1$:
$f\left(x_{1: n ; p}\right)=p^{\sum x}(1-p)^{n-\sum x}$ Let $Y=\sum X, \lambda=\left(\frac{p_{1}}{p_{0}}\right)^{Y}\left(\frac{1-p_{1}}{1-p_{0}}\right)^{n-Y}$ increase in Y. Find γ, m s.t. $\alpha=\mathbb{P}_{0}[Y>m]+\gamma \mathbb{P}_{0}[Y=m]$
Remark: $\cdot T_{*}$ relies on p_{0} only, not on p_{1}.
For any $p_{1}>p_{0}$, the test T_{*} has level α, and it is a UMP test for $H_{1}: p=p_{1}$
Therefore T_{*} is a UMP test for testing $H_{0} p p=p_{0}$. Lemma: Suppose that there is a test T_{*} of size α s.t. for every $P_{1} \in \mathcal{P}_{1}, T_{*}$ is UMP for Lemma: Suppose that there is a test T_{*} of size α s.t. for every $P_{1} \in \mathcal{P}_{1}, T_{*}$ is UMP for
testing H_{0} versus the hypothesis $P=P_{1}$. Then T_{*} is UMP for testing H_{0} v.s. H_{1} testing H_{0} versus the hypothesis P
Extend to a family: \downarrow satisfy this.
Monotone Likelihood Ratio Family: Suppose $X \sim P_{\theta}$ with $\theta \in \Theta$. Suppose that
$\mathcal{P}=\left\{P_{\theta}: \theta \in \Theta\right\}$ is dominated by a measure ν, with PDF $f_{\theta}=d P_{\theta} / d \nu$. For a $\mathcal{P}=\left\{P_{\theta}: \theta \in \Theta\right\}$ is dominated by a measure ν, with PDF $f_{\theta}=d P_{\theta} / d \nu$. For statistic $Y(X), \mathcal{P}$ has monotone likelihood ratio in $Y(X)$ iff, for any $\theta_{1}<\theta_{2}$:
On supp $(f) \cup$.
On $\operatorname{supp}\left(f_{\theta_{1}}\right) \cup \operatorname{supp}\left(f_{\theta_{2}}\right), f_{\theta_{2}}(x) / f_{\theta_{1}}(x)$ is a non-decreasing function of $Y(x)$.
Remark: When monotone in Y, UMP given by NP-Lemma, can be defined by $Y>$ and the calculation is based on θ_{1}, doesn't depends on θ_{2}.
Lemma: Suppose $X \sim P_{\theta}$ with $\theta \in \Theta$, and \mathcal{P} has monotone likelihood ratio in $Y(X)$.
If ψ is a non-dec function of Y then $g(\theta)=\mathbb{E}[\psi(Y)]$ is a non-dec function of θ. If ψ is a non-dec. function of Y, then $g(\theta)=\mathbb{E}[\psi(Y)]$ is a non-dec. function of θ. Proof: Let $\theta_{1}<\theta_{2}, h(y(x))=f_{\theta_{2}}(x) / f_{\theta_{1}}(x)$, Let $A=\left\{x: f_{\theta_{1}}(x)>f_{\theta_{2}}(x)\right\}=$
$\{x: h(y(x))<1\}, B=\left\{x: f_{\theta_{1}}(x)<f_{\theta_{2}}(x)\right\}=\{x: h(y(x))>1\}$. Since $h(y)$ is $\{x: h(y(x))<1\}, B=\left\{x: f_{\theta_{1}}(x)<f_{\theta_{2}}(x)\right\}=\{x: h(y(x))>1\}$. Since $h(y)$ is
non-decreasing in $y, a=\sup _{x \in A} \psi(Y(x)) \leq b=\inf _{x \in B} \psi(Y(x)) . g\left(\theta_{2}\right)-g\left(\theta_{1}\right)$ is $\int \psi(Y(x))\left(f_{\theta_{2}}(x)-f_{\theta_{1}}(x)\right) d \nu \geq a \int_{A}\left(f_{\theta_{2}}(x)-f_{\theta_{1}}(x)\right) d \nu+b \int_{B}\left(f_{\theta_{2}}(x)-f_{\theta_{1}}(x)\right) d \nu=$ $\int \psi(Y(x))\left(f_{\theta_{2}}(x)-f_{\theta_{1}}(x)\right) d \nu \geq a \int_{A}\left(f_{\theta_{2}}(x)-f_{\theta_{1}}(x)\right) d \nu+b \int_{B}\left(f_{\theta_{2}}(x)-f_{\theta_{1}}(x)\right) d \nu=$
$(b-a) \int_{B}\left(f_{\theta_{2}}(x)-f_{\theta_{1}}(x)\right) d \nu \geq 0$, as $\int_{A}\left(f_{\theta_{2}}(x)-f_{\theta_{1}}(x)\right) d \nu+\int_{B}\left(f_{\theta_{2}}(x)-\right.$

Ex: Let $\theta \in \Theta \subset \mathbb{R}, \eta(\theta)$ non-decreasing function of θ. Then the one-parameter ex-
ponential family with $f_{\theta}(x)=\exp \{\eta(\theta) T(x)-A(\theta)\} h(x)$ has monotone likelihood ponential fam
ratio in $T(X)$ ratio in $T(X)$
Ex: $X_{i} \sim U n i(0, \theta)$ where $\theta>0$ PDF of $X_{1: n}$ is $f_{\theta}(x)=\theta^{-n} I_{(0, \theta)}\left(x_{(n)}\right)$, for $\theta_{1}<{ }_{2}$,
only need to consider $\left(0, \theta_{1}\right) \cup\left(0, \theta_{2}\right)=\left(0, \theta_{2}\right) f_{\theta_{2}}(x) / f_{\theta_{1}}(x)$ is non-dec. in $x_{(n)}$ only need to consider $\left(0, \theta_{1}\right) \cup\left(0, \theta_{2}\right)=\left(0, \theta_{2}\right) f_{\theta_{2}}(x) / f_{\theta_{1}}(x)$ is non-dec. in $x_{(n)}$
Theorem: UMP of Monotone Likelihood Ratio Family: Suppose $X \sim P_{\theta}$ with $\theta \in \Theta$, and \mathcal{P} has monotone likelihood ratio in $Y(X)$, sider the testing $H_{0}: \theta \leq \theta_{0}$ v.s. $H_{1}: \theta>\theta_{0}$, where θ_{0} is a given constant.
(1) There exists a UMP test of size α, which is given by $T_{*}(X)=$

$\begin{cases}\gamma & Y(X) \\ 0 & Y(X)\end{cases}$

and γ are from $\beta_{T_{*}}\left(\theta_{0}\right)=\alpha$, and $\beta_{T}(\theta)=\mathbb{E}_{\theta} T$ is the power function of a test Ψ.
(2) $\beta_{T_{*}}(\theta)$ is strictly increasing for all θ 's for which $0<\beta_{T_{*}}(\theta)<$
(3) For any $\theta<\theta_{0}, T_{*}$ minimizes $\beta_{T}(\theta)$ (type I error of T) among T s.t. $\beta_{T}\left(\theta_{0}\right)=$ (4) For any fixed θ_{1}, T_{*} is UMP for $H_{0}: \theta \leq \theta_{1}$ v.s. $H_{1}: \theta>\theta_{1}$, with size $\beta_{T}\left(\theta_{1}\right)$. (5) Assume that $\mathbb{P}_{\theta}\left[f_{\theta}(X)=c f_{\theta_{0}}(X)\right]=0$, for any $\theta>\theta_{0}$ and $c \geq 0$. If T is a test
with $\beta_{T}\left(\theta_{0}\right)=\beta_{T_{0}}\left(\theta_{0}\right)$, then for $\forall \theta>\theta_{0}$ either $\beta_{T}(\theta)<\beta_{T_{0}}(\theta)$ or $T=T_{*} a . s . \mathcal{P}$ with $\beta_{T}\left(\theta_{0}\right)=\beta_{T_{0}}\left(\theta_{0}\right)$, then for $\forall \theta>\theta_{0}$ either $\beta_{T}(\theta)<\beta_{T_{0}}(\theta)$ or T
Remark: optimal: $\theta<\theta_{0}$ minimize Type I; $\theta>\theta_{0}$ minimize Type II

- Uniqueness: When $\mathbb{P}_{\theta}\left[f_{\theta}(X)=c f_{\theta_{0}(X)}\right]=0$ holds for any $\theta<\theta_{0}$ and $c>0$,
and the power at $\theta=\theta_{0}$ are equal.
Proof: (1) T_{*} is UMP for $H_{0}: \theta=\theta_{0}$ v.s. $H_{1}: \theta>\theta_{0}$ from Lemma above, and $\beta_{T_{*}}$
is non-decreasing in θ as T_{*} is non-decreasing in Y (Another Lemma). $\Rightarrow T_{*}$ is size is non-decreasing in θ as T_{*} is non-decreasing in Y (Another Lemma). $\Rightarrow T_{*}$ is size
α on $\left\{\theta<\theta_{0}\right\}$. Meanwhile any level α, T, for $H_{0}: \theta<\theta_{0} v, H_{1}: \theta>\theta_{0}$ is also α on $\left\{\theta \leq \theta_{0}\right\}$. Meanwhile any level α, T, for $H_{0}: \theta \leq \theta_{0}$ v.s. $H_{1}: \theta>\theta_{0}$ is also
level α, T, for $H_{0}: \theta=\theta_{0}$ v.s. $H_{1}: \theta>\theta_{0}$. As T_{*} UMP in the $"="$ test \Rightarrow more powerful on $\Theta_{1} \Rightarrow$ also UMP of the " \leq "test.
power
(2)
(3) The
versed.
(4) Similar to (1)
(4) Similar to (1)
${ }_{\text {Ex }} X_{i} \sim \operatorname{Ubif}(0, \theta) \theta>0$. Testing $H_{0}: \theta \leq \theta_{0}$ v.s. $H_{1}: \theta>\theta_{0}$
$Y=X_{(n)}$, monotone likelihood ratio, UMP is $T_{*}, \alpha=\beta_{T_{*}}\left(\theta_{0}\right)=\frac{n}{\theta_{0}^{n} \int_{c}^{\theta_{0}} x^{n-1} d x=}$ $1-c^{n} \theta_{0}^{-n} \Rightarrow c=\theta_{0}(1-\alpha)^{1 / n}$. For $\theta>\theta_{0}, \beta_{T_{*}}(\theta)=1-\theta_{0}^{n} \theta^{-n}(1-\alpha)$. Another
test $\left.T \xlongequal{=} \alpha I_{(X}(n) \theta_{0}\right)+I_{(X}$ test $T \xlongequal{=} \alpha I_{\left(X_{(n)} \leq \theta_{0}\right)}+I_{\left(X_{(n)}>\theta_{0}\right)}$. Same power function when $\theta>\theta_{0}$.
As in this case $\mathbb{P}\left\{f_{\theta_{1}}=f_{\theta_{0}}\right\}=1$, is not contradictory with the unique lemma One Parameter Exponential Family:
$f_{\theta}(x)=\exp \{\eta(\theta) T(x)-A(\theta)\} h(x), \eta$ is strictly monotone function of θ.
If η is increasing, then T_{*} given by Monotone Likelihood Ratio Theorem is UMP
for testing $H_{0}: \theta \leq \theta_{0}$ v.s. $H_{1}: \theta>\theta_{0}$ for testing $H_{0}: \theta \leq \theta_{0}$ v.s. $H_{1}: \theta_{>}>\theta_{0}$
. If η is decreasing or test is $H_{0}: \theta>\theta_{0}$
by reversing inequalities in definition of T_{*}.
Ex: $X_{i} \sim N\left(\mu, \sigma^{2}\right), \mu \in \mathbb{R}$ unknown, σ^{2} is known. $H_{0}: \mu \leq \mu_{0}$ v.s. $H_{1}: \mu>\mu_{0}$ $Y=\bar{X}, \eta=\frac{n \mu}{\sigma^{2}} \Rightarrow T_{*}=I_{\left(\bar{X}>C_{\alpha}\right)} \Rightarrow C_{\alpha}=\sigma Z_{1-\alpha} / \sqrt{n}+\mu_{0}$, where $Z_{\alpha}=\Phi^{-1}$
- Discuss: dist of Y is needed. If it is continuous the test is non-randomized
- $X_{i} \sim \operatorname{Poisson}(\theta)$ with unknown $\theta>0, H_{0}: \theta \leq \theta_{0}$

Ex: $X_{i} \sim \operatorname{Poisson}(\theta)$ with unknown $\theta>0, H_{0}: \theta \leq \theta_{0}$ v.s. $H_{1}: \theta>\theta_{0}$:
$Y=\sum X \sim \operatorname{Poisson}(n \theta), \eta=\log \theta \nearrow \alpha=\sum_{j=c+1}^{\infty} \frac{e^{n \theta_{0}\left(n \theta_{0}\right)^{j}}}{j!}+\gamma \frac{e^{n \theta_{0}\left(n \theta_{0}\right)^{c}}}{c!}$, $\alpha=\sum_{j=c+1}^{\infty}\left[e^{n \theta_{0}}\left(n \theta_{0}\right)^{j} / j!\right]$ for some integer c it is non-randomized.
Two Sided Tests: For fixed $\theta_{0}, \theta_{1}<\theta_{2}$
(1) $H_{0}: \theta \leq \theta_{1}$ or $\theta \geq \theta_{2} \quad$ v.s. $H_{1}: \theta_{1}<\theta<\theta_{2} \quad$ UMP in 1-para exp. $\begin{array}{lll}\text { (2) } H_{0}: \theta_{1} \leq \theta \leq \theta_{2} & \text { v.s. } & H_{1}: \theta>\theta_{1} \text { or } \theta<\theta_{2} \\ \text { (3) } H_{0}: \theta=\theta_{0} & \text { Only UMPU } \\ & \text { v.s. } & H_{1}: \theta \neq \theta_{0}\end{array}$
(3) $H_{0}: \theta=\theta_{0} \quad$ v.s. $H_{1}: \theta \neq \theta_{0} \quad$ O
Generalized Neyman-Pearson lemma: Define the class of tests:

Generalized Neyman-Pearson lemma: Define the class of tests:
Let f_{1}, \cdots, f_{m+1} be measurable on $\left(\mathbb{R}^{p}, \mathcal{B}\right)$ and also integrable w.r.t a measure ν. For given constants t_{1}, \cdots, t_{m} let \mathcal{T} be the class of measurable functions
$\phi: \mathbb{R}^{p} \rightarrow[0,1]$ satisfying $\int \phi f_{i} d \nu \leq t_{i}, i=1, \cdots, m$, and \mathcal{T}_{0} be the set of ϕ 's in \mathcal{T} satisfying the condition with all inequalities replaced by equalities.
Generalized Neyman-Pearson lemma: Result:
If there are constants c_{1}, \cdots, c_{m} s.t.

$$
\phi_{*}(x)= \begin{cases}1 & f_{m+1}(x)>c_{1} f_{1}(x)+\cdots+c_{m} f_{m}(x) \\ 0 & f_{m+1}(x)<c_{1} f_{1}(x)+\cdots+c_{m} f_{m}(x)\end{cases}
$$

is a member of \mathcal{T}_{0}, then ϕ_{*} maximizes $\int \phi f_{m+1} d \nu$ over $\psi \in \mathcal{T}_{0}$. If $c_{i} \geq 0$ for all i, ϕ_{*} maximizes $\int \phi f_{m+1} d \nu$ over $\psi \in \mathcal{T}$
Lemma: f_{1}, \cdots, f_{m+1} and ν given by the generalized Neyman-Pearson lemma. Then the set $M=\left\{\left(\int \phi f_{1} d \nu, \cdots, \int \phi f_{m} d \nu\right): \phi: \mathbb{R}^{p} \rightarrow[0,1]\right\}$ is convex and closed. If
t_{1}, \cdots, t_{m} is an interior point of M, then there exist constants c_{1}, \cdots c. t_{1}, \cdots, t_{m} is an interior point of M, then there exist constants c_{1}, \cdots, c_{m}
function $\phi_{*}(x)$ defined in the generalized Neyman-Pearson lemma is in \mathcal{T}_{0}.
Proof: Suppose $\phi_{*} \in \mathcal{T}_{0}, \forall \phi \in \mathcal{T}_{0}\left(\phi_{*}-\phi\right)\left(f_{m+1}-\sum c_{i} f_{i}\right) \geq 0$
Therefore $\int\left(\phi_{*}-\phi\right)\left(f_{m+1}-\sum c_{i} f_{i}\right) d \nu>0 \Rightarrow \int\left(\phi_{*}-\phi\right) f_{m+1} d \nu$
Therefore $\int\left(\phi_{*}-\phi\right)\left(f_{m+1}-\sum c_{i} f_{i}\right) d \nu \geq 0 \underset{\mathcal{T}_{2}}{\Rightarrow} \int\left(\phi_{*}-\phi\right) f_{m+1} d \nu \geq c_{i} \int\left(\phi_{*}-\phi\right) f_{i} d \nu$.
Hence, ϕ_{*} maximizes $\int \phi f_{m+1} d \nu$ over $\psi \in$, If $c_{i}>0$ the first line still holds. Hence, ϕ_{*} maximizes $\int \phi f_{m+1} d \nu$ over
UMP Tests for Two-Sided Hypothesis:
(a) For hypothesis (1), a size α UMP is given as following,
$\alpha=\beta_{T_{*}}\left(\theta_{1}\right)=\beta_{T_{*}}\left(\theta_{2}\right)$.

$$
T_{*}(X)= \begin{cases}1 & c_{1}<Y(X)<c_{2} \\ \gamma_{i} & Y(X)=c_{i}, i=1,2 \\ 0 & Y(X)<c_{1} \text { or } c 2>Y(X)\end{cases}
$$

(b) T_{*} minimizes $\beta_{T}(\theta)$ over $\theta<\theta_{1}, \theta>\theta_{2}$ and T s.t. $\alpha=\beta_{T}\left(\theta_{1}\right)=\beta_{T}\left(\theta_{2}\right)$ (c) If T_{*} and $T_{* *}$ are two tests given by (a), $\beta_{T_{*}}\left(\theta_{1}\right)=\beta_{T_{* *}}\left(\theta_{1}\right)$, and if the region
$\left\{T_{* *}=1\right\}$ is to the right of $\left\{T_{*}=1\right\}$, then $\beta_{T_{*}}(\theta)<\beta_{T_{*} *}(\theta)$ for $\theta>\Theta_{1}$ and $\beta_{T_{*}}(\theta)>\beta_{T_{* *} *}(\theta)$ for $\theta<\Theta_{1}$. If both T_{*} and $T_{* *}$ satisfy (a) and have power α at $\theta=\theta_{1}, \theta_{2}$, then $T_{*}=T_{* *}$ a.s. P.
Proof: (a) generalized Neyman-Pearson Lemma above. Start from $H_{0}: \theta=$
θ_{1}, θ_{2} v.s. $H_{1}: \theta=\theta_{3}$, where $\theta_{1}<\theta_{3}<\theta_{2}=$ θ_{1}, θ_{2} v.s. $H_{1}: \theta=\theta_{3}$, where $\theta_{1}<\theta_{3}<\theta_{2} .\left(\beta_{t}\left(\theta_{1}\right), \beta_{t}\left(\theta_{1}\right)\right)$ is interior point
$\Rightarrow \tilde{c_{1}}, \tilde{c_{2}} \cdots T_{*}$ based on Y doesn't depends on $\theta_{3} \Rightarrow$ From 3 points \rightarrow testing (1). (b) Consider $\theta_{3}<\theta_{1}$ similar with above. And $\theta_{3}>\theta_{2}$. Uniformly Most Powerful Unbiased (UMPU) Tests:
Given α. Test T for $H_{0}: P \in \mathcal{P}_{0}$ v.s. $H_{1}: P \in \mathcal{P}_{1}$ is unbiased of level α iff $\beta_{T}(P) \leq \alpha, P \in \mathcal{P}_{0}$ and $\beta_{T}(P) \geq \alpha, P \in \mathcal{P}_{1}$
A test of size α is UMPU iff it is UMP among the unbiased tests of level α Similarity: hypothesis: $H_{0}: \theta \in \Theta_{0}$ v.s. $H_{1}: \theta \in \Theta_{1}$. Let α be a given level o significance, and $\bar{\Theta}_{01}$ be the common boundary of Θ_{0} and Θ_{1}. i.e. common limi test T is similar
Remark: . Transform P to θ to make it easier to find the boundary Remark: Transform P to θ to make it easier to find the boundary;
Unbiased are usually similar. Work with similar tests are much easier. Continuity of the power function: $\beta_{T}(\theta)$ is continuous in θ iff $\forall\left\{\theta_{j}\right\}_{j=1}^{\infty} \subset \Theta, \theta_{j} \rightarrow \theta$ implies $\beta_{T}\left(\theta_{j}\right) \rightarrow \beta_{T}(\theta)$, where $P_{j} \in \mathcal{P}$ and $\theta_{j}=\theta\left(P_{j}\right)$. If parametric, β_{T} is just a function of θ, the continuous is just that of $\beta_{T}(\theta)$ Lemma: Hypothesis: $H_{0}: \theta \in \Theta_{0}$ v.s. $H_{1}: \theta \in \Theta_{1}$ Suppose that, for every $T, \beta_{T}(P)$
is continuous in θ. If T_{*} is uniformly most powerful among all similar tests is continuous in θ. If T_{*} is unifor
size α, then T_{*} is a UMPU test. Proof: continuous: \{unbiased Proof. continuous: $\{$ unbiased $\} \subset\{$ similar $\}, T_{*}$ is size α and more powerful than
fixed test $T=\alpha \Rightarrow T_{*}$ unbiased and UMP Neyman structure: Let $U(X)$ be a suff statistic for the boundary $\overline{\mathcal{P}}=\left\{P: \theta \in \bar{\Theta}_{01}\right\}$ and let \bar{P}_{U} be the distribution of U for $P \in \overline{\mathcal{P}}$. Test T is said to have Neyman structure w.r.t. U if $\mathbb{E}[T \mid U]=\alpha$, a.s. $\overline{\mathcal{P}}$.

- If T has Neyman structure, $\mathbb{E} T=\mathbb{E}[\mathbb{E}(T \mid U)]=\alpha \forall P \in \overline{\mathcal{P}} \Rightarrow T$ is similar on $\bar{\Theta}_{01}$.
- If all tests similar on $\bar{\Theta}_{01}$ have Neyman structure w.r.t. U, then working with tests having Neyman structure is the same as working with tests similar on Θ_{01} Lemma 6.6: Let $U(X)$ be a sufficient and complete statistic for $P \in \overline{\mathcal{P}}$, then all tests similar on $\bar{\Theta}_{01}$ have Neyman structure w.r.t. U
Theorem: UMPU tests in exponential families:
Theorem: UMPU tests in exponential families:
In Exp family with PDF $f_{\theta, \phi}(x)=\exp \left\{\theta Y(x)+\phi^{T} U(x)-\zeta(\theta, \phi)\right\}$ θ is real valued, ϕ can be a vector, $Y \in \mathbb{R}$ and vector U are statistics
(1) For test $H_{0}: \theta \leq \theta_{0}$ v.s. $H_{1}: \theta>\theta_{0}$ a UMPU test of size α is given as:

$$
T_{*}(Y, U)
$$

(2) For test $H_{0}: \theta \leq \theta_{1}$ or $\theta_{0} \geq \theta_{2}$ v.s. $H_{1}: \theta_{1}<\theta<\theta_{2}$ a UMPU test of size α is given as:
$T_{*}(Y, U)=\left\{\begin{array}{ll}1 & c_{1}(U)<Y<c_{2}\left(U_{\text {where }} c(u) \text { and } \gamma(u) \text { are Borel functions }\right. \\ \gamma_{i}(U) & Y=c_{i}(U) \\ 0 & \text { stherwise }\end{array} \quad \begin{array}{ll}\text { s.t } \mathbb{E}_{\theta_{1}}\left[T_{*} \mid U=u\right]=\mathbb{E}_{\theta_{2}}\left[T_{*} \mid U=u\right]=\alpha \\ \text { for each } u\end{array}\right.$ (3) For test $H_{0}: \theta_{1} \leq \theta \leq \theta_{2}$ v.s. $H_{1}: \theta<\theta_{1}$ or $\theta>\theta_{2}$ a UMPU test of size α is given as:
$T_{*}(Y, U)=\left\{\begin{array}{ll}1 & \text { otherwise } \\ \gamma_{i}(U) & Y=c_{i}(U)\end{array} \quad \begin{array}{l}\text { where } c(u) \text { and } \gamma(u) \text { are Borel functions } \\ \text { s.t } \mathbb{E}_{\theta_{1}}\left[T_{*} \mid U=u\right]=\mathbb{E}_{\theta_{2}}\left[T_{*} \mid U=u\right]=\alpha\end{array}\right.$

(4) For test $H_{0}: \theta=\theta_{0}$ v.s. $H_{1}: \theta \neq \theta_{0}$ a UMPU test of size α is given as that in (3), but with $\mathbb{E}_{\theta_{0}}\left[T_{*} \mid U=u\right]=\alpha$ and $\mathbb{E}_{\theta_{0}}\left[T_{*} Y \mid U=u\right]=\alpha \mathbb{E}_{\theta_{0}}[Y \mid U=u]$
Remark: This result only for Exp family, and no Uniqueness is assured. Proof: Given $U=u, Y \sim f()$ is 1-parameter. in (1)-(4) find $\bar{\Theta}_{01}$, and U comp \& suff on it \Rightarrow Neyman structure \Rightarrow UMP among them \Leftrightarrow UMP among similar \Rightarrow UMPU Ex1 Poisson: $X_{1} \sim P\left(\lambda_{1}\right), X_{2} \sim P\left(\lambda_{2}\right)$, rewrite the density as: $p=\frac{\exp \left\{-\left(\lambda_{1}+\lambda_{2}\right)\right\}}{x_{1}!x_{2}!} \exp \left\{x_{2} \log \frac{\lambda_{2}}{\lambda_{1}}+\left(x_{1}+x_{2}\right) \log \lambda_{1}\right\}$, and let $\theta=\log \frac{\lambda_{2}}{\lambda_{1}} Y=X_{2}$ Test $H_{0}: \lambda_{1}=\lambda_{2}$ v.s. $H_{1}: \lambda_{1} \neq \lambda_{2} \Leftrightarrow H_{0}: \theta=0$ v.s. $H_{1}: \theta \neq 0$, with
$U=X_{1}+X_{2}, \phi=\log \lambda_{1}$ Find a UMPU: $\left.\mathbb{P}|Y=y| U=u\right]=\binom{u}{y} p^{y}(1-p)^{u-y}$ where $p=\frac{e^{\theta}}{1+e^{\theta}}$ on the boundary $\theta=0$ dist. of Y is known. We can find the UMPU. Ex2: Binomial: $X_{1} \Perp X_{2}, X_{i} \sim \operatorname{Binomial}\left(n_{i}, p_{i}\right), n_{1}, n_{2}$ are known, p_{1}, p_{2} not

PMF is $\left.\left({ }^{n_{1}}\right) n^{n_{2}}\right)\left(1-p_{1}^{n_{1}}\left(1-p_{2}\right)^{n_{2}} \exp \left\{x_{2} e^{p_{2}\left(1-p_{1}\right)}+\left(x_{1}+x_{1}\right\}\right.\right.$

Hence, $\theta=$

Remark: UMP amd UMPU are very good, but may not exist is some cases. \Rightarrow Find some test not bad and always exist
ratio is defined as $\lambda(X)=$ Let $L(\theta)=f_{\theta}(X)$ be the likelihood function. The likelihood some size n. For test $H_{0}: \theta \in \Theta_{0}$ v.s. $H_{1}: \theta \in \Theta_{1}$
Likelihood ratio (LR) test is any test that rejects H_{0} iff $\lambda(X)<c$, where $c \in[0,1]$. Remark: - If $\lambda(X)$ is well defined, then $\lambda(X) \leq 1$, and tends to 1 if H_{0} is true;

Let $\hat{\theta}$ be the MLE of θ, and $\hat{\theta}_{0}$ be MLE on Θ_{0}. Then $\lambda(X)=L\left(\hat{\theta}_{0}\right) / L(\hat{\theta})$;
For given α if $\exists c_{\alpha}$ s.t. $\sup _{\theta \in \Theta_{0}} \mathbb{P}_{\theta}\left[\lambda(X)<c_{\alpha}\right]=\alpha$, size α test can be defined.
Properties: When a UMP or UMPU test exists, an LR test is often the same.
Suppose that X is in a 1-parameter exp family: $f_{\theta}(x)=\exp \{\eta(\theta) Y(x)$
Suppose that X is in a 1-parameter exp family: $f_{\theta}(x)=\exp \{\eta(\theta) Y(x)-A(\theta)\} h(x)$,
where η is a strictly increasing and differentiable function of θ
where η is a strictly increasing and differentiable function of θ.
(1) For test $H_{0}: \theta \leq \theta_{0}$ v.s. $H_{1}: \theta>\theta_{0}$ there is an LR test whose rejection region is
the same as that of the UMP test.
(2) For test $H_{0}: \theta \leq \theta_{1}$ or $\theta_{0} \geq \theta_{2}$
or $\theta_{0} \geq \theta_{2}$ v.s. $H_{1}: \theta_{1}<\theta<\theta_{2}$ there is an LR test whose rejection region is the same as that of the UMP test.
(3) For testing
regif testing the other two-sided hypotheses, there is an LR test whose rejection region is equivalent to $Y(X)<c_{1}$ or $Y(X)>c_{2}$ for some constants c_{1} and c_{2}
Proof: Prove (1) only. (2) and (3) are very similar Proof: Prove (1) only. (2) and (3) are very similar.
Let $\hat{\theta}$ be be the MLE of $\theta \in \Theta$. Recall for exp family dist, $\frac{\partial}{\partial \eta} \log L(\theta)=Y(x)-B^{\prime}(\eta)$, which is a strictly decreasing function shown before. Therefore, the MLE exists and is unique for η. Since η is strictly increasing of θ, so the MLE of θ exists and unique. And $L(\theta) \nearrow$ if $\theta<\theta, L(\theta) \searrow$ if $\theta>\hat{\theta}$. Thus $\lambda=1$ if $\hat{\theta} \leq \theta_{0}$ and $\lambda=L\left(\theta_{0}\right) / L(\hat{\theta})$ if $\hat{\theta}>\theta_{0}$. Then $\lambda<c$ is same as $\hat{\theta}>\theta_{0}$ and $L\left(\theta_{0}\right) / L(\hat{\theta})<c$.
As $\hat{\eta}$ is s.t. $Y(X)=B^{\prime}(\eta)$, with B^{\prime} strictly $\nearrow \Rightarrow \hat{\eta} \nearrow$ in $Y \Rightarrow \hat{\theta} \nearrow$ in Y
Consequently, for any $\theta_{0} \frac{d}{d Y}\left[\log L(\hat{\theta})-\log L\left(\theta_{0}\right)\right]=\eta(\hat{\theta})-\eta\left(\theta_{0}\right)$. Thus,
$\log \left[L\left(\theta_{0}\right) / L(\hat{\theta})\right] \nearrow$ in Y when $\hat{\theta}>\theta_{0}$, and \searrow when $\hat{\theta} \leq \theta_{0}$.
Hence, for any $c \in(0,1) \lambda<c \Leftrightarrow \hat{\theta}>\theta_{0}$ and $L\left(\theta_{0}\right) / L(\hat{\theta})<c \Leftrightarrow Y>d$
Ex: $X_{i} \sim \operatorname{Uni}(0 \theta), H_{0}: \theta=\theta_{0}$ v.s. $H_{1}: \theta \neq \theta_{0}: \lambda(X)=\left[X^{n}\right.$
Ex: $X_{i} \sim \operatorname{Uni}(0 \theta), H_{0}: \theta=\theta_{0}$ v.s. $H_{1}: \theta \neq \theta_{0}: \lambda(X)=\left[X_{(n)} / \theta_{0}\right]^{n} I_{\left(X_{(n)} \leq \theta_{0}\right)}$
Reject when $\lambda<c \Leftrightarrow X_{(n)}>\theta_{0}$ or $X_{(n)}<c^{-n} \theta_{0}$. Take $c=\alpha$ it's size α.
Ex: Normal Linear Models: $X \sim N_{n}\left(Z \beta, \sigma^{2} I_{n}\right) . H_{0}: L \beta=0$ v.s. $H_{1}: L \beta \neq 0$:
$\hat{\beta}_{0}$ is LSE under $H_{0}, \hat{\sigma}_{0}^{2}=\left\|X-Z \hat{\beta}_{0}\right\|^{2} / n$. $\sup _{\theta \in \Theta_{0}} L(\theta)=\left(2 \pi \hat{\sigma}_{0}^{2}\right)^{-n}$
LR test is $\lambda=\left[\hat{\sigma}^{2} / \hat{\sigma}_{0}^{2}\right]^{n / 2}=\left(\frac{\|X-Z \hat{\beta}\|^{2}}{\|X-Z \hat{\beta}\|_{0} \|^{2}}\right)^{n / 2}$. Select c s.t. $\sup _{\theta \in \Theta_{0}} \mathbb{P}_{\theta}[\lambda<c] \leq \alpha$ Especially, we consider a two-sample problem. $n=n_{1}+n_{2}, \beta=\left(\mu_{1}, \mu_{2}\right)$ and
$Z=\operatorname{diag}\left(J_{n_{1}}, J_{n_{2}}\right)$ with $L=(1,-1)$ to test $\mu_{1}=\mu_{2} . \lambda<c \Leftrightarrow|t|>c_{0}:$ $Z=\operatorname{diag}\left(J_{n_{1}}, J_{n_{2}}\right)$ with $L=(1,-1)$ to test $\mu_{1}=\mu_{2} . \lambda<c \Leftrightarrow|t|>c_{0}$
$t(X)=\left\{\left(\bar{X}_{1}-\bar{X}_{2}\right) / \sqrt{n_{1}^{-1}+n_{2}^{-1}}\right\} /\left\{\left[\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}\right] /\left(n_{1}+n_{2}-2\right)\right\}$
Regularity conditions: Let $X_{1: n}$ iid from a PDF f_{θ} with a measure ν where $\theta \in \Theta$
and Θ is an open set in \mathbb{R}^{k}. The regularity conditions below for the asymptotic of and Θ is an open set in
MLE will be assumed:
(1) $f_{\theta}(x)$ is twice continuousl
(1) $f_{\theta}(x)$ is twice continuously differentiable in θ and s.t.: $\frac{\partial}{\partial \theta} \int g_{\theta} d \nu=\int \frac{\partial}{\partial \theta} g_{\theta} d \nu$.
for $g_{\theta}=f_{\theta}(x)$ and $\partial f_{\theta}(x) / \theta$,
for $g_{\theta}=f_{\theta}(x)$ and $\partial f_{\theta}(x) / \partial \theta$;
(2) The Fisher information matrix, $I_{1}(\theta)$, based on X_{1} is positive definite;
(3) For any given $\theta \in \Theta$, there exists a positive number c_{θ} and a positive function h_{θ} s.t. $\mathbb{E} h_{\theta}\left(X_{1}\right)<\infty$ and $\sup _{\gamma:\|\gamma-\theta\|<c_{\theta}}\left\|\frac{\partial^{2} \log f_{\gamma}(x)}{\partial \gamma \partial \gamma^{T}}\right\| \leq h_{\theta}(x)$ for all x in the range
of X_{1}, where $\|A\|=\sqrt{\operatorname{tr}\left(A^{T} A\right)}$ for any matrix A.
Thm: Asymptotic LRT: Regularity conditions \uparrow hold, Suppose that $H_{0}: \theta=g(\vartheta)$, where ϑ is a $(k-r)$-vector of unknown parameters and g is a continuously differ entiable function from \mathbb{R}^{k-r} to \mathbb{R}^{k} with a full rank $\partial g(\vartheta) / \partial \vartheta$. Then, under H_{0} : $-2 \log \lambda_{n} \rightarrow^{d} \chi_{r}^{2}: r=\operatorname{dim}(\theta)-\operatorname{dim}(\vartheta)$, and reject $\lambda_{n}<\exp \left\{-\frac{1}{2} \chi_{r, \alpha}^{2}\right\}$
Wald Test: $H_{0}: R(\theta)=0: W_{n}=[R(\hat{\theta})]^{T}\left\{[C(\hat{\theta})]^{T}\left[I_{n}(\hat{\theta})\right]^{-1} C(\hat{\theta})\right\}^{-1} R(\hat{\theta})$. Where $C(\theta)=\partial R(\theta) / \partial \theta, I_{n}$ is the Fisher Inf. Matrix of $X_{1: n}$, and $\hat{\theta}$ is the MLE or RLE. Score Test: $R_{n}=\left[s_{n}(\tilde{\theta})\right]^{T}\left[I_{n}(\tilde{\theta})\right]^{-1}\left[s_{n}(\tilde{\theta})\right]$. Where $s_{n}(\theta)=\partial \log L(\theta) / \partial \theta$ is the score function, and $\tilde{\theta}$ is an MLE or RLE under $H_{0}: R(\theta)=0$
Remark: They are asymptotically same, and reject when W, R is large
Thm 6.6: Under regularity conditions:
(1) $R(\theta)$ continuously differentiable function from \mathbb{R}^{k} to $\mathbb{R}^{r}, W_{n} \rightarrow^{d} \chi_{r}^{2}$, reject when $W_{n}>\chi_{r, \alpha}^{2}$, where $\chi_{r, \alpha}^{2}$ is the $1-\alpha$ quantile of χ_{r}^{2}
(2) Result for R_{n} is same with that of W_{n} above.
Confidence Set: Let X be sample from a population $P \in \mathcal{P}$. Let $\theta=\theta(P)$ be the parameter of interest. Let $C(X)$ be a random set determined by sample X the parameter of interest. Let $C(X)$ be a random set determined by sample X. The
random set $C(X)$ is said to be a confidence set for θ with confidence level $1-\alpha$, or a level $1-\alpha$ confidence set, if $\inf _{P \in \mathcal{P}} P[\theta \in C(X)] \geq 1-\alpha$. The exact infimum $\inf _{P \in \mathcal{P}} P[\theta \in C(X)]$ is called the confidence coefficient of $C(X)$.
If $C(X)$ is of the form: $[\theta(X), \bar{\theta} X]$, it's confidence interval.
If $C(X)$ is of the form: $[\underline{\theta}(X), \bar{\theta} X]$, it's confidence interval.
$[\underline{\theta}(X), \infty)$, it's confidence lower bound. $\quad(-\infty, \bar{\theta} X]$, it's confidence upper bound.

Pivotal Quantity: If the dist. of $R(X, \theta)$ does not depend on θ, then it is a pivotal.
Thm: Pivotal Quantity: Suppose that $P \in \mathcal{P}=\left\{P_{\theta}\right\}$. Let $T(X)$ be a realThm: Pivotal Quantity: Suppose that $P \in \mathcal{P}=\left\{P_{\theta}\right\}$. Let $T(X)$ be a real-
valued statistic with CDF $F_{T, \theta}(t)$ and let α_{1} and α_{2} be fixed positive constants s.t. $\alpha_{1}+\alpha_{2}=\alpha<1 / 2$.
s.t. $\alpha_{1}+\alpha_{2}=\alpha,{ }^{(1)}$ Suppose $F_{T, \theta}(t)$ and $F_{T, \theta}(t-)$ are non-increasing in θ for each fixed t. Define:
$\bar{\theta}=$ $\bar{\theta}=\sup \left\{\theta: F_{T, \theta}(T) \geq\right.$
$\theta=\sup \left\{\theta: F_{T, \theta}(T) \geq\right.$
$1-\alpha$ confidence interval
(2) Suppose $F_{T}(t)$ erval; $\underline{-} \inf \left\{\theta: F_{T, \theta}(T-) \leq 1-\alpha_{2}\right\}$. $\left.\underline{\theta}(X), 0 X\right]$ (2) Suppose $F_{T, \theta}(t)$ and $F_{T, \theta}(t-)$ are non-decreasing in θ for each fix
is $\bar{\theta}=\sup \left\{\theta: F_{T, \theta}(T-) \leq 1-\alpha_{2}\right\}$, and $\theta=$ inf $\left\{\theta: F_{T, \theta}(T) \geq \alpha_{1}\right\}$;
(3) If continuous, $F_{T, \theta}(T)$ is a pivotal quantiny. Result is same.

Proof: $(1): \theta>\theta \Rightarrow F_{T, \theta}(T)<\alpha_{1}, \theta<\underline{\theta} \Rightarrow F_{T, \theta}(T-)>1-\alpha_{2} . \mathbb{P}[\underline{\theta}$
$\left.1-\mathbb{P} \mathbb{P} F_{T, \theta}(T)<\alpha_{1}\right]-\mathbb{P}\left[F_{T, \theta}(T-)>1-\alpha_{2}\right] \geq 1-\alpha_{1}-\alpha_{2}=1-\alpha$.
$1-\mathbb{P}_{1} F_{T, \theta}(T)<\alpha_{1}-\mathbb{P}\left[F_{T, \theta}(T-)>1-\alpha_{2}\right] \geq 1-\alpha_{1}-\alpha_{2}=1-\alpha$.
Ex: $X_{i} \sim \operatorname{Poisson}(\theta), T \xlongequal{\sim} \sum X \operatorname{Poisson}(n \theta)$ is comp and suff, and we can
\sim find $F_{T, \theta}(t)=\sum_{j=0}^{t} e^{-n \theta}(n \theta)^{j} / j!t=0,1, \cdots$, which is continuous in $\theta, \bar{\theta}$ is the unique root of $F_{T, \theta}(T)=\alpha_{1}$. As $F_{T, \theta}(T-)=F_{T, \theta}(T-1), \underline{\theta}$ is the unique root of $F_{T, \theta}(T-1)=1-\alpha_{2}$ when $T>0$ and $\underline{\theta}=0$ when $T=0$. As $\frac{1}{\Gamma(t)} \int_{\lambda}^{\infty} X^{t-1} e^{-x} d x=$ $\sum_{j=0}^{t-1} e^{-\lambda} \lambda^{j} / j!, \bar{\theta}=(2 n)^{-1} \chi_{2(T+1), \alpha_{1}}^{2}, \underline{\theta}=(2 n)^{-1} \chi_{2(T), 1-\alpha_{2}}^{2}$
nverting acceptance regions of tests: Consider testing problem $H_{0}: \theta=\theta_{0}$ v.s. some H_{1} be a size α test, and the acceptance region is $A_{T}\left(\theta_{0}\right)=\{x: T(x) \neq 1\}$,
For every $\theta \in \Theta, A_{T}(\theta)$ is a function from Θ to subsets of \mathcal{X}. "Inverse", $C(x)=\left\{\theta: x \in A_{T}(\theta)\right\}$. If all T_{θ} is level $\alpha, C(x)$ is level $1-\alpha$ CI.
The other direction: $C(X)$ be level $1-\alpha \mathrm{CI}, A\left(\theta_{0}\right)=\left\{x: \theta_{0} \in C(X)\right\}$ is subset of $\mathcal{X} . T=1-T_{A\left(\theta_{0}\right)}(X)$ is a level α test for H_{0}.
Ex: 1-parameter exp family: $f_{\theta}(x)=\exp \{\eta(\theta) Y(x)-A(\theta)\} h(x), \eta \nearrow$ strictly.

- Testing $H_{0}: \theta=\theta_{0}$ v.s. $H_{1}: \theta>\theta_{0}$ there is UMP T_{*} based on Y. Testing $H_{0}: \theta=\theta_{0}$ v.s. $H_{1}: \theta>\theta_{0}$ there is UMP T_{*} based on Y.
cept set: $A\left(\theta_{0}\right)=\left\{x: Y(x) \leq c\left(\theta_{0}\right)\right\} c(\theta)$ non-dec. in θ can be shown. cept set: $A\left(\theta_{0}\right)=\left\{x: Y(x) \leq c\left(\theta_{0}\right)\right\} c(\theta)$ non-dec. in θ can be shown.
$C(x)=\{\theta: c(\theta) \geq Y(x)\}$ is a lower bound. If Y is continuous, conf. coef. is For testing $H_{0}: \theta=\theta_{0}$ v.s. $H_{1}: \theta<\theta_{0}$: Upper bound.
For $H_{0}: \theta=\theta_{0}$ v.s. $H_{1}: \theta \neq \theta_{0}:$ Confidence Interval.
Evaluation: Better test should have better CI, but hard to say which is better Length Criterion: Consider CI's of a real-valued θ with the same conf. coef. The shorter the better - Uniformly
Find the best among a class of CI's.
Shortest CI for Pivotal: Consider real-valued parameter θ and statistic $T(X)$ (1) Let U be a positive statistic s.t. $(T-\theta) / U$ is a pivotal with pdf f that is unimodal at x_{0}. Consider CI's for $\theta: \mathcal{C}=\left\{[T-b U, T-a U]: \int_{a}^{b} f d x=1-\alpha\right\}$. If $\left[T-b_{*} U, T-a_{*} U\right] \in \mathcal{C}$, with $f\left(a_{*}\right)=f\left(b_{*}\right)>0, a_{*}<x_{0}<b_{*}$, it's shortest in \mathcal{C}.
(2) Suppose that $T>0, \theta>0, T / \theta$ is a pivotal with PDF f, and that $x^{2} f(x)$ is unimodal at x_{0}. Consider $\mathcal{C}=\left\{[T / b, T / a]: a, b>0, \int_{a}^{b} f d x=1-\alpha\right\}$ If $\left[T / b_{*}, T / a_{*}\right] \in \mathcal{C}, a_{*}^{2} f\left(a_{*}\right)=b_{*}^{2} f\left(b_{*}\right)>0, a_{*}<x_{0}<b_{*}$, it's shortest in \mathcal{C}. Unimodal: non-decreasing when $x<x_{0}$, non-increasing when $x>x_{0}$
Proof: (1) length of CI in \mathcal{C} is $(b-a) U$. When $a<b, b-a<b_{x}-$ if Proof: (1) length of CI in \mathcal{C} is $(b-a) U$. When $a<b, b-a<b_{*}-a_{*}$, if
$\cdot a<b \leq a_{*}$ by unimodal: $\int_{a}^{b} f d x \leq f\left(a_{*}\right)(b-a)<\int_{a_{*}}^{b_{*}} f d x=1-\alpha$ $a<b \leq a_{*}$ by unimodal: $\int_{a}^{b} f d x \leq f\left(a_{*}\right)(b-a)<\int_{a_{*}}^{b_{*}} f d x=1-\alpha$
$a \leq a_{*}<b<b_{*}$ and $a>a_{*}$ is similar. (2) change x to $1 / y$ can be proved
Ex: $X_{i} \sim N\left(\mu, \sigma^{2}\right)$, if σ^{2} unknown $\sqrt{n}(\bar{X}-\mu) / S \sim t_{n-1}$ is the pivotal; if σ^{2} kn $\sqrt{n}(\bar{X}-\mu) / \sigma \sim N(0,1)$. It is the shortest among that in \mathcal{C}.
 $C(X)$ with conf coef $1-\alpha$ is $\Theta^{\prime}-$ UMA iff for any other level
$\forall \theta^{\prime} \in \Theta^{\prime}, \mathbb{P}\left[\theta^{\prime} \in C(X)\right] \leq \mathbb{P}\left[\theta^{\prime} \in C_{1}(X)\right]$. It is UMA iff $\Theta^{\prime}=\{\theta\}^{c}$
Remark: Less prob. to cover false θ. For lower bound can use $\Theta^{\prime}=\left\{\theta^{\prime} \in \Theta: \theta^{\prime}<\theta\right\}$ Thm UMA: $C(X)$ be conf set for θ by inverting acceptance regions of non-rand
tests $T_{\theta_{0}}$ for $H_{0}: \theta=\theta_{0}$ v.s. $H_{1}: \theta \in \Theta_{\theta_{0}}$ where $\Theta_{\theta_{0}}$ is a set related to θ_{0}.
If for each $\theta_{0}, T_{\theta_{0}}$ is UMP of size α, then $C(X)$ is Θ^{\prime}-UMA with conf coef $1-$ where $\Theta^{\prime}=\left\{\theta^{\prime}: \theta \in \Theta_{\theta^{\prime}}\right\}$ region of θ^{\prime} that reject true θ.
- In 1-para exp fam with MLR, UMP exists hence UMA exists.
Proof: Assume another level $1-\alpha C_{1}(X)$ test $T_{1 \theta_{0}}(X)=1-T_{A_{1}\left(\theta_{0}\right)}(X)$ is also level α. For non-randomized UMP $T: \mathbb{P}\left[\theta^{\prime} \in C\right]=1-\mathbb{P}\left[T_{\theta^{\prime}}=1\right] \leq 1-\mathbb{P}\left[T_{1 \theta^{\prime}}=1\right]$
UMAU CI: \cdot Level $1-\alpha$ conf set $C(X)$ is Θ^{\prime}-unbiased iff $\mathbb{P}\left[\theta^{\prime}\right] \leq 1-\alpha, \forall \theta^{\prime} \in \Theta^{\prime}$
 Let $C(X)$ be a Θ^{\prime}-unbiased conf set with conf coef $1-\alpha$ if for any other level $1-\alpha$,
Θ^{\prime}-unbiased set $C_{1}(X), \forall \theta^{\prime} \in \Theta^{\prime}, \mathbb{P}\left[\theta^{\prime} \in C(X)\right] \leq \mathbb{P}\left[\theta^{\prime} \in C_{1}(X)\right]$, it is Θ^{\prime}-UMAU - $C(X)$ is UMAU iff $\Theta^{\prime}=\{\theta\}^{c}$
Thm UMAU CI. $C(X)$ be

Thm UMAU CI: $C(X)$ be conf set for θ by inverting AR of non-randomized tests $T_{\theta_{0}}$ for $H_{0}: \theta=\theta_{0}$ v.s. $H_{1}: \theta \in \Theta_{\theta_{0}}$. If for each $\theta_{0}, T_{\theta_{0}}$ is unbiased of size $\alpha, C(X)$ is Θ^{\prime} - unbiased with conf coef $1-\alpha$ where $\Theta^{\prime}=\left\{\theta^{\prime}: \theta \in \Theta_{\theta^{\prime}}\right\}$
If $T_{\theta_{0}}$ is also UMPU for each $\theta_{0}, C(X)$ is Θ^{\prime}-UMAU
. Proof is similar to UMA. Unbiased: always smaller prob. to cover false θ^{\prime}.
Non-rand. test AR is $\left.A\left(\theta_{0}\right), \sigma^{2} T_{n}\right)$, with $\theta=a^{T} \beta$, with $a \in R(Z)$:
Non
Non-rand. test AR is $A\left(\theta_{0}\right)=\left\{x: a^{T} \hat{\beta}-\theta_{0}>t_{n-r, \alpha} \sqrt{a^{T}\left(Z^{T} Z\right)-a S S R /(n-r)}\right\}$
is size α UMPU for $H_{0}: \theta=\theta_{0}$ v.s. $H_{1}: \theta<\theta_{0}$. Inverting it, there is a Θ^{\prime}-UMAU is size α UMPU for $H_{0}: \theta=\theta_{0}$ v.s. $H_{1}: \theta<\theta_{0}$. Inverting it, there is a Θ^{\prime}-UMAU
upper bound with conf coef $1-\alpha$, and $\Theta^{\prime}=\left\{\theta^{\prime}: \theta \in \Theta_{\theta^{\prime}}\right\}=\left\{\theta^{\prime}: \theta<\theta^{\prime}\right\}=(\theta, \infty)$. The upper bound is $\bar{\theta}=a^{T} \hat{\beta}-t_{n-r, \alpha} \sqrt{a^{T}\left(Z^{T} Z\right)^{-} a S S R /(n-r)}$

